|
import datetime |
|
import time |
|
from collections import defaultdict |
|
from collections import deque |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
|
|
class SmoothedValue: |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average.""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
t = reduce_across_processes([self.count, self.total]) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value, |
|
) |
|
|
|
|
|
class MetricLogger: |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError( |
|
f"'{type(self).__name__}' object has no attribute '{attr}'" |
|
) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append(f"{name}: {str(meter)}") |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = "" |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt="{avg:.4f}") |
|
data_time = SmoothedValue(fmt="{avg:.4f}") |
|
space_fmt = ":" + str(len(str(len(iterable)))) + "d" |
|
if torch.cuda.is_available(): |
|
log_msg = self.delimiter.join( |
|
[ |
|
header, |
|
"[{0" + space_fmt + "}/{1}]", |
|
"eta: {eta}", |
|
"{meters}", |
|
"time: {time}", |
|
"data: {data}", |
|
"max mem: {memory:.0f}", |
|
] |
|
) |
|
else: |
|
log_msg = self.delimiter.join( |
|
[ |
|
header, |
|
"[{0" + space_fmt + "}/{1}]", |
|
"eta: {eta}", |
|
"{meters}", |
|
"time: {time}", |
|
"data: {data}", |
|
] |
|
) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print( |
|
log_msg.format( |
|
i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB, |
|
) |
|
) |
|
else: |
|
print( |
|
log_msg.format( |
|
i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time), |
|
) |
|
) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print(f"{header} Total time: {total_time_str}") |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def reduce_across_processes(val): |
|
if not is_dist_avail_and_initialized(): |
|
|
|
return torch.tensor(val) |
|
|
|
t = torch.tensor(val, device="cuda") |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
return t |
|
|
|
|
|
def accuracy(output, target, topk=(1,)): |
|
"""Computes the accuracy over the k top predictions for the specified |
|
values of k.""" |
|
with torch.inference_mode(): |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
if target.ndim == 2: |
|
target = target.max(dim=1)[1] |
|
|
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target[None]) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].flatten().sum(dtype=torch.float32) |
|
res.append(correct_k * (100.0 / batch_size)) |
|
return res |
|
|