metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
- f1
- recall
- precision
pipeline_tag: audio-classification
base_model: facebook/wav2vec2-base
model-index:
- name: wav2vec2-base-Toronto_emotional_speech_set
results: []
wav2vec2-base-Toronto_emotional_speech_set
This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4925
- Accuracy: 0.8804
- Weighted f1: 0.8837
- Micro f1: 0.8804
- Macro f1: 0.8822
- Weighted recall: 0.8804
- Micro recall: 0.8804
- Macro recall: 0.8757
- Weighted precision: 0.9044
- Micro precision: 0.8804
- Macro precision: 0.9059
Model description
This model classifies the emotion when someone speaks in audio sample.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Audio-Projects/Emotion%20Detection/Toronto%20Emotional%20Speech%20Set%20(TESS)/Toronto%20Emotional%20Speech%20Set%20(TESS).ipynb
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9517 | 0.97 | 17 | 1.9432 | 0.2411 | 0.1338 | 0.2411 | 0.1201 | 0.2411 | 0.2411 | 0.2168 | 0.1161 | 0.2411 | 0.1049 |
1.9517 | 2.0 | 35 | 1.9036 | 0.3375 | 0.3037 | 0.3375 | 0.3082 | 0.3375 | 0.3375 | 0.3533 | 0.5364 | 0.3375 | 0.5379 |
1.9517 | 2.97 | 52 | 1.6629 | 0.4518 | 0.4020 | 0.4518 | 0.3936 | 0.4518 | 0.4518 | 0.4503 | 0.6751 | 0.4518 | 0.6555 |
1.9517 | 4.0 | 70 | 1.2026 | 0.7357 | 0.7121 | 0.7357 | 0.6989 | 0.7357 | 0.7357 | 0.7240 | 0.7903 | 0.7357 | 0.7848 |
1.9517 | 4.97 | 87 | 0.8458 | 0.8839 | 0.8796 | 0.8839 | 0.8767 | 0.8839 | 0.8839 | 0.8845 | 0.8874 | 0.8839 | 0.8807 |
1.9517 | 6.0 | 105 | 0.6493 | 0.8946 | 0.8939 | 0.8946 | 0.8914 | 0.8946 | 0.8946 | 0.8937 | 0.9049 | 0.8946 | 0.9014 |
1.9517 | 6.97 | 122 | 0.5149 | 0.9089 | 0.9046 | 0.9089 | 0.8989 | 0.9089 | 0.9089 | 0.8957 | 0.9275 | 0.9089 | 0.9327 |
1.9517 | 8.0 | 140 | 0.3814 | 0.9536 | 0.9531 | 0.9536 | 0.9501 | 0.9536 | 0.9536 | 0.9474 | 0.9577 | 0.9536 | 0.9583 |
1.9517 | 8.97 | 157 | 0.5627 | 0.85 | 0.8459 | 0.85 | 0.8402 | 0.85 | 0.85 | 0.8378 | 0.9100 | 0.85 | 0.9160 |
1.9517 | 10.0 | 175 | 0.4702 | 0.8911 | 0.8861 | 0.8911 | 0.8854 | 0.8911 | 0.8911 | 0.8938 | 0.9021 | 0.8911 | 0.8967 |
1.9517 | 10.97 | 192 | 0.3362 | 0.9393 | 0.9376 | 0.9393 | 0.9361 | 0.9393 | 0.9393 | 0.9399 | 0.9402 | 0.9393 | 0.9365 |
1.9517 | 12.0 | 210 | 0.3808 | 0.9179 | 0.9181 | 0.9179 | 0.9176 | 0.9179 | 0.9179 | 0.9180 | 0.9251 | 0.9179 | 0.9235 |
1.9517 | 12.97 | 227 | 0.4546 | 0.9036 | 0.9045 | 0.9036 | 0.9024 | 0.9036 | 0.9036 | 0.8988 | 0.9151 | 0.9036 | 0.9157 |
1.9517 | 14.0 | 245 | 0.5065 | 0.8786 | 0.8826 | 0.8786 | 0.8813 | 0.8786 | 0.8786 | 0.8742 | 0.9040 | 0.8786 | 0.9055 |
1.9517 | 14.57 | 255 | 0.4925 | 0.8804 | 0.8837 | 0.8804 | 0.8822 | 0.8804 | 0.8804 | 0.8757 | 0.9044 | 0.8804 | 0.9059 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3