DunnBC22's picture
Update README.md
e73eaa3
|
raw
history blame
24.2 kB
---
language:
- en
license: other
tags:
- computer-vision
- generated_from_trainer
model-index:
- name: mit-b0-CMP_semantic_seg_with_mps_v2
results: []
---
# mit-b0-CMP_semantic_seg_with_mps_v2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0863
- Mean Iou: 0.4097
- Mean Accuracy: 0.5538
- Overall Accuracy: 0.6951
- Per Category Iou:
- Segment 0: 0.5921698801573617
- Segment 1: 0.5795623712718901
- Segment 2: 0.5784812820145221
- Segment 3: 0.2917052691882505
- Segment 4: 0.3792639848157326
- Segment 5: 0.37973303153855376
- Segment 6: 0.4481097636024487
- Segment 7: 0.4354492668218124
- Segment 8: 0.26472453634508664
- Segment 9: 0.4173722023142026
- Segment 10: 0.18166072949276144
- Segment 11: 0.36809541729585366
- Per Category Accuracy:
- Segment 0: 0.6884460857323806
- Segment 1: 0.7851625477616788
- Segment 2: 0.7322992353412343
- Segment 3: 0.45229387721112274
- Segment 4: 0.5829333862769369
- Segment 5: 0.5516333441001092
- Segment 6: 0.5904157921999404
- Segment 7: 0.5288772981353482
- Segment 8: 0.4518224891972707
- Segment 9: 0.571864661897264
- Segment 10: 0.23178753217655862
- Segment 11: 0.47833833709905393
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Segment 0: Per Category Iou | Segment 1: Per Category Iou | Segment 2: Per Category Iou | Segment 3: Per Category Iou | Segment 4: Per Category Iou | Segment 5: Per Category Iou | Segment 6: Per Category Iou | Segment 7: Per Category Iou | Segment 8: Per Category Iou | Segment 9: Per Category Iou | Segment 10: Per Category Iou | Segment 11: Per Category Iou | Segment 0: Per Category Accuracy | Segment 1: Per Category Accuracy | Segment 2: Per Category Accuracy | Segment 3: Per Category Accuracy | Segment 4: Per Category Accuracy | Segment 5: Per Category Accuracy | Segment 6: Per Category Accuracy | Segment 7: Per Category Accuracy | Segment 8: Per Category Accuracy | Segment 9: Per Category Accuracy | Segment 10: Per Category Accuracy | Segment 11: Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| 1.6807 | 1.0 | 189 | 1.3310 | 0.2226 | 0.3388 | 0.5893 | 0.4635 | 0.4905 | 0.4698 | 0.0 | 0.2307 | 0.1515 | 0.2789 | 0.0002 | 0.0250 | 0.3527 | 0.0 | 0.2087 | 0.6133 | 0.6847 | 0.7408 | 0.0 | 0.4973 | 0.1720 | 0.4073 | 0.0002 | 0.0255 | 0.6371 | 0.0 | 0.2874 |
| 1.1837 | 2.0 | 378 | 1.1731 | 0.2602 | 0.3876 | 0.6122 | 0.4240 | 0.5249 | 0.5152 | 0.0057 | 0.2636 | 0.2756 | 0.3312 | 0.0575 | 0.0539 | 0.3860 | 0.0 | 0.2854 | 0.4782 | 0.7844 | 0.6966 | 0.005693923012331629 | 0.5735250918240624 | 0.36835801828416304 | 0.6226168977672956 | 0.05767745156759108 | 0.056265139348553275 | 0.590726524634641 | 0.0 | 0.4168 |
| 1.0241 | 3.0 | 567 | 1.0485 | 0.2915 | 0.3954 | 0.6393 | 0.5442 | 0.5037 | 0.5329 | 0.0412 | 0.3062 | 0.2714 | 0.3820 | 0.1430 | 0.0796 | 0.4007 | 0.0002 | 0.2929 | 0.8126 | 0.6852 | 0.6682812855352882 | 0.041991381045239105 | 0.49715664486119526 | 0.34177557441959217 | 0.5120585878274232 | 0.1452966910279639 | 0.08494893658553898 | 0.5882194328558888 | 0.00016528267929344714 | 0.3672 |
| 0.9353 | 4.0 | 756 | 0.9943 | 0.3054 | 0.4021 | 0.6570 | 0.5776 | 0.5289 | 0.5391 | 0.1171 | 0.3137 | 0.2600 | 0.3664 | 0.1527 | 0.1074 | 0.3935 | 0.0002 | 0.3078 | 0.8079 | 0.7362 | 0.6802560980516426 | 0.12306993011845858 | 0.512920197647116 | 0.33239396237919133 | 0.42117282716339 | 0.15535336024112006 | 0.12232149987134326 | 0.5586955195187552 | 0.0001775258407225914 | 0.3751 |
| 0.8717 | 5.0 | 945 | 1.0010 | 0.3299 | 0.4440 | 0.6530 | 0.4790 | 0.5506 | 0.5472 | 0.1547 | 0.3372 | 0.3297 | 0.4151 | 0.2339 | 0.1709 | 0.4081 | 0.00082 | 0.3314 | 0.5408 | 0.8111 | 0.7439010923003654 | 0.1647386208284467 | 0.5336310060432693 | 0.47195496826220606 | 0.5649886876937538 | 0.24592767041211344 | 0.21268289220340186 | 0.6032254750148772 | 0.0008172310253953776 | 0.4343 |
| 0.8238 | 6.0 | 1134 | 0.9537 | 0.3546 | 0.4771 | 0.6701 | 0.5572 | 0.5525 | 0.5611 | 0.2076 | 0.3434 | 0.3163 | 0.4103 | 0.3279 | 0.2107 | 0.4191 | 0.0067 | 0.3418 | 0.6870 | 0.7532 | 0.7388529233923034 | 0.2427845747080173 | 0.5081350142927471 | 0.41732749265984126 | 0.5923295163811956 | 0.37097280542070116 | 0.31168646797334587 | 0.6181032158263363 | 0.006828623287105196 | 0.4785 |
| 0.7415 | 8.0 | 1512 | 0.9738 | 0.3554 | 0.4634 | 0.6733 | 0.5366 | 0.5659 | 0.5550 | 0.2331 | 0.3497 | 0.3334 | 0.4301 | 0.3401 | 0.1989 | 0.4181 | 0.0358 | 0.2680 | 0.6081 | 0.8461 | 0.6598362819270074 | 0.30354751181463 | 0.5720401047797135 | 0.4539774768726024 | 0.5734811831554486 | 0.3848984957854349 | 0.26418995057806804 | 0.5607853711429407 | 0.03791707094605969 | 0.2962 |
| 0.7708 | 7.0 | 1323 | 0.9789 | 0.3550 | 0.4837 | 0.6683 | 0.5310 | 0.5634 | 0.5594 | 0.2299 | 0.3424 | 0.3375 | 0.4050 | 0.2883 | 0.2197 | 0.4142 | 0.0316 | 0.3373 | 0.6050 | 0.7961 | 0.7433683394118146 | 0.2875899542681869 | 0.5834520174957 | 0.4949117910713184 | 0.5607636948180663 | 0.3102642098935939 | 0.3671530482773307 | 0.6185428826392109 | 0.03448592495554202 | 0.4022 |
| 0.7018 | 9.0 | 1701 | 0.9449 | 0.3667 | 0.4802 | 0.6826 | 0.5798 | 0.5657 | 0.5624 | 0.2368 | 0.3648 | 0.3271 | 0.4250 | 0.3207 | 0.2096 | 0.4236 | 0.0504 | 0.3346 | 0.7241 | 0.7684 | 0.7677311546869556 | 0.2957821250373002 | 0.5320609310645918 | 0.42119264423548025 | 0.5547462091572214 | 0.35133197830090934 | 0.2813412242797441 | 0.5645280153294033 | 0.054445338875404405 | 0.4465 |
| 0.682 | 10.0 | 1890 | 0.9422 | 0.3762 | 0.5047 | 0.6805 | 0.5802 | 0.5622 | 0.5585 | 0.2340 | 0.3793 | 0.3407 | 0.4277 | 0.3801 | 0.2301 | 0.4216 | 0.0640 | 0.3367 | 0.7124 | 0.7649 | 0.7024134248020867 | 0.287877946717927 | 0.5535415826760965 | 0.441309578680332 | 0.6309566731585817 | 0.4959965113450929 | 0.3981571031827014 | 0.5591670008934155 | 0.07239687432088714 | 0.4370 |
| 0.6503 | 11.0 | 2079 | 0.9889 | 0.3785 | 0.5082 | 0.6729 | 0.5193 | 0.5649 | 0.5605 | 0.2698 | 0.3772 | 0.3526 | 0.4342 | 0.3433 | 0.2415 | 0.4336 | 0.0889 | 0.3562 | 0.5876 | 0.8060 | 0.7295986604417997 | 0.38378984184703785 | 0.5267267279434854 | 0.4982615891035389 | 0.5901717549740297 | 0.383783111953036 | 0.4151153917819401 | 0.5987203244459441 | 0.103029264216606 | 0.4756 |
| 0.633 | 12.0 | 2268 | 0.9594 | 0.3901 | 0.5224 | 0.6797 | 0.5539 | 0.5641 | 0.5679 | 0.2658 | 0.3757 | 0.3510 | 0.4257 | 0.3993 | 0.2354 | 0.4338 | 0.1800 | 0.3287 | 0.6497 | 0.7807 | 0.7448456086694618 | 0.4017702861187639 | 0.5380576045315403 | 0.4614936542558404 | 0.5848777216054816 | 0.48827668376350436 | 0.3247961456216782 | 0.6062577678381901 | 0.2917759623890081 | 0.3958 |
| 0.6035 | 13.0 | 2457 | 0.9612 | 0.3939 | 0.5288 | 0.6834 | 0.5663 | 0.5666 | 0.5679 | 0.2631 | 0.3726 | 0.3609 | 0.4351 | 0.3759 | 0.2511 | 0.4256 | 0.1737 | 0.3681 | 0.6650 | 0.7792 | 0.7595289859518171 | 0.40488962602618994 | 0.5501279357869723 | 0.4940371417476292 | 0.583148993385804 | 0.4374533247759857 | 0.38431984951598447 | 0.5591195398258335 | 0.25781343258456196 | 0.4711 |
| 0.5874 | 14.0 | 2646 | 0.9657 | 0.3939 | 0.5383 | 0.6844 | 0.5807 | 0.5670 | 0.5679 | 0.2670 | 0.3594 | 0.3605 | 0.4393 | 0.3863 | 0.2406 | 0.4228 | 0.1705 | 0.3652 | 0.6881 | 0.7715 | 0.7076490702220812 | 0.45138479261073833 | 0.6010571162888695 | 0.4899633082794087 | 0.623500155081721 | 0.44661640117817103 | 0.3626766811886108 | 0.5934218960331414 | 0.2536721832311539 | 0.4702 |
| 0.5684 | 15.0 | 2835 | 0.9762 | 0.3950 | 0.5446 | 0.6855 | 0.5800 | 0.5711 | 0.5671 | 0.2825 | 0.3664 | 0.3587 | 0.4408 | 0.4021 | 0.2540 | 0.4246 | 0.1376 | 0.3548 | 0.6690 | 0.7721 | 0.7253292181715818 | 0.46066300719634146 | 0.6286397883336339 | 0.49001048853338364 | 0.5936197648110916 | 0.4950579174573106 | 0.4336663620311793 | 0.6295105616521876 | 0.17492722970925553 | 0.4630 |
| 0.5485 | 16.0 | 3024 | 1.0645 | 0.3794 | 0.5095 | 0.6704 | 0.4855 | 0.5683 | 0.5685 | 0.2612 | 0.3832 | 0.3628 | 0.4378 | 0.4056 | 0.2525 | 0.4206 | 0.1242 | 0.2825 | 0.5250 | 0.8335 | 0.7460261114546437 | 0.3741958765032859 | 0.6113892226001657 | 0.48233280951153923 | 0.5879903770611306 | 0.5021155863372445 | 0.4084452055402252 | 0.5756625904042066 | 0.1498379311505817 | 0.3171 |
| 0.5402 | 17.0 | 3213 | 0.9747 | 0.4044 | 0.5600 | 0.6839 | 0.5697 | 0.5674 | 0.5687 | 0.2971 | 0.3767 | 0.3741 | 0.4486 | 0.4126 | 0.2489 | 0.4260 | 0.1874 | 0.3757 | 0.6652 | 0.7673 | 0.7058054085118902 | 0.43181865497116606 | 0.5994505750526228 | 0.5137421562827766 | 0.6111778496069427 | 0.5596237481396876 | 0.4547660665643328 | 0.5819342314775361 | 0.2821497767153434 | 0.5465 |
| 0.5275 | 18.0 | 3402 | 1.0054 | 0.3944 | 0.5411 | 0.6790 | 0.5341 | 0.5728 | 0.5616 | 0.2827 | 0.3823 | 0.3782 | 0.4298 | 0.4070 | 0.2578 | 0.4195 | 0.1448 | 0.3632 | 0.6012 | 0.8091 | 0.6765196940223528 | 0.4560932956745616 | 0.5706807237336585 | 0.5392721175586759 | 0.625477643828456 | 0.5679393042619234 | 0.43474885318048323 | 0.5567162365355298 | 0.18059887424130658 | 0.4751 |
| 0.5032 | 19.0 | 3591 | 1.0014 | 0.3973 | 0.5256 | 0.6875 | 0.5696 | 0.5739 | 0.5699 | 0.2918 | 0.3717 | 0.3635 | 0.4444 | 0.4122 | 0.2531 | 0.4142 | 0.1659 | 0.3369 | 0.6634 | 0.8079 | 0.6985897029453216 | 0.43889702361538085 | 0.5273507061285597 | 0.4876478465843311 | 0.6231884172060415 | 0.5022195173955948 | 0.37174919922273586 | 0.5243691720025597 | 0.22317752890151296 | 0.4388 |
| 0.4985 | 20.0 | 3780 | 0.9893 | 0.3990 | 0.5468 | 0.6883 | 0.5937 | 0.5702 | 0.5630 | 0.2892 | 0.3790 | 0.3757 | 0.4383 | 0.4110 | 0.2592 | 0.4147 | 0.1291 | 0.3653 | 0.7110 | 0.7679 | 0.6951620501883469 | 0.48746712375347845 | 0.5261270605967906 | 0.554917815626826 | 0.6444102092579851 | 0.530145899919748 | 0.4511925148398889 | 0.5441213209197433 | 0.16031807733392917 | 0.4888 |
| 0.4925 | 21.0 | 3969 | 1.0416 | 0.3955 | 0.5339 | 0.6806 | 0.5336 | 0.5723 | 0.5732 | 0.2843 | 0.3748 | 0.3738 | 0.4383 | 0.3876 | 0.2598 | 0.4170 | 0.1693 | 0.3624 | 0.5945 | 0.8130 | 0.7299376590661159 | 0.451089860583896 | 0.5922282301507069 | 0.5323583957261948 | 0.5643368721355146 | 0.43405145765987974 | 0.4067238671552665 | 0.5833731884605977 | 0.22720246822134413 | 0.4781 |
| 0.4772 | 22.0 | 4158 | 1.0142 | 0.3969 | 0.5476 | 0.6838 | 0.5634 | 0.5752 | 0.5595 | 0.2783 | 0.3833 | 0.3540 | 0.4448 | 0.4054 | 0.2586 | 0.4145 | 0.1597 | 0.3660 | 0.6478 | 0.7921 | 0.6887339171833209 | 0.48257125210789653 | 0.5784379070799239 | 0.4598840817452339 | 0.6029010515642786 | 0.5938234950622032 | 0.4904904927109305 | 0.5605052986891879 | 0.2093611212287237 | 0.4644 |
| 0.4707 | 23.0 | 4347 | 0.9896 | 0.4077 | 0.5458 | 0.6966 | 0.6013 | 0.5801 | 0.5794 | 0.2988 | 0.3816 | 0.3736 | 0.4464 | 0.4241 | 0.2633 | 0.4162 | 0.1747 | 0.3530 | 0.7110 | 0.7878 | 0.7191573316014347 | 0.4628593833491787 | 0.5669834503967731 | 0.5061243598909774 | 0.5890972039631646 | 0.5353692391925092 | 0.4442073414194831 | 0.5584702098352893 | 0.22803194240816863 | 0.4401 |
| 0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 | 0.7277 | 0.7718 | 0.7094761814943847 | 0.4788724575124392 | 0.540134155309791 | 0.5080424186775738 | 0.6040472393092015 | 0.531419858975197 | 0.4572549089199045 | 0.5413847470559795 | 0.2852993299929908 | 0.5062 |
| 0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 | 0.6781 | 0.7703 | 0.7304544322215338 | 0.5101803596088854 | 0.5953744578176565 | 0.5310663826173427 | 0.5960144784924483 | 0.5285622905976679 | 0.46465932583870884 | 0.5860904649672127 | 0.2676049009375201 | 0.5242 |
| 0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 | 0.6603 | 0.7989 | 0.7348948005657967 | 0.46896968098764064 | 0.567680361096986 | 0.46196545679558976 | 0.6111148722583205 | 0.5257582949306286 | 0.45560899000026617 | 0.5888990127576392 | 0.21101700881201543 | 0.4530 |
| 0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922
| 0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 | 0.7218 | 0.7735152547135933 | 0.7273383842606477 | 0.42966391628094186 | 0.6000765791408955 | 0.5321170505808616 | 0.6214596889863638 | 0.5409825877976366 | 0.40535300746209063 | 0.527865644497828 | 0.27674748173473357 | 0.4839 |
| 0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 | 0.7054 | 0.794821357455996 | 0.7009002011448908 | 0.4551633923428706 | 0.5412848683264216 | 0.5356918621320393 | 0.5420932726021768 | 0.524953632819071 | 0.47009618200047915 | 0.5948618961165895 | 0.3047720782460447 | 0.4213 |
| 0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 | 0.6744 | 0.8003970499043351 | 0.728890415841166 | 0.44210310823658405 | 0.5409850346530742 | 0.5408980216956584 | 0.5822027587227564 | 0.5334224068933078 | 0.4790023335669858 | 0.5027629121485208 | 0.2177201396944719 | 0.4910 |
| 0.4106 | 31.0 | 5859 | 1.0573 | 0.4113 | 0.5520 | 0.6937 | 0.5819 | 0.5787 | 0.5775 | 0.2882 | 0.3861 | 0.3888 | 0.4522 | 0.4207 | 0.2722 | 0.4277 | 0.2050 | 0.3566 | 0.6622 | 0.7858034932824415 | 0.7534036118191814 | 0.3855455548538872 | 0.5706827496368568 | 0.5888948569893917 | 0.5901646700223098 | 0.4979422721900845 | 0.42678766315004923 | 0.6260161753576922 | 0.27349386158493844 | 0.4630 |
| 0.4102 | 32.0 | 6048 | 1.0616 | 0.4043 | 0.5444 | 0.6904 | 0.5769 | 0.5774 | 0.5737 | 0.2844 | 0.3762 | 0.3768 | 0.4424 | 0.4331 | 0.2649 | 0.3959 | 0.1748 | 0.3744 | 0.6629 | 0.7960392186220868 | 0.7344564993141556 | 0.4132483466457554 | 0.5702876985131896 | 0.5450244792933123 | 0.5855145800434228 | 0.5469302301162207 | 0.4371090388010967 | 0.5086997179978106 | 0.21776299075947392 | 0.5147 |
| 0.394 | 33.0 | 6237 | 1.0244 | 0.4104 | 0.5587 | 0.6957 | 0.6076 | 0.5755 | 0.5774 | 0.2887 | 0.3833 | 0.3803 | 0.4483 | 0.4329 | 0.2687 | 0.4194 | 0.1884 | 0.3547 | 0.7279 | 0.7642312461588138 | 0.7249562626143585 | 0.49993754380608046 | 0.5329786652134187 | 0.5418035196469465 | 0.6148407696461775 | 0.5491288541547245 | 0.4677559603559799 | 0.5808149847629112 | 0.2548261011958508 | 0.4455 |
| 0.3865 | 34.0 | 6426 | 1.0618 | 0.4086 | 0.5468 | 0.6922 | 0.5729 | 0.5787 | 0.5789 | 0.2853 | 0.3854 | 0.3735 | 0.4469 | 0.4279 | 0.2694 | 0.4240 | 0.1986 | 0.3613 | 0.6571 | 0.800236166757726 | 0.7189775596036913 | 0.4516033892894567 | 0.5620503761089287 | 0.5182932361662052 | 0.582221651927343 | 0.5443565971042879 | 0.39937046928653186 | 0.5930557677975091 | 0.27516505312001666 | 0.4588 |
| 0.3816 | 35.0 | 6615 | 1.0515 | 0.4109 | 0.5587 | 0.6937 | 0.5942 | 0.5769 | 0.5777 | 0.2873 | 0.3867 | 0.3811 | 0.4448 | 0.4281 | 0.2669 | 0.4147 | 0.1956 | 0.3774 | 0.6946 | 0.7771115993838257 | 0.7289041127552798 | 0.448133600738371 | 0.5477819398833484 | 0.5395933062107361 | 0.5833930306117148 | 0.5406622229889072 | 0.49804353034080723 | 0.5651643065651174 | 0.26963114415404343 | 0.5116 |
| 0.3803 | 36.0 | 6804 | 1.0709 | 0.4118 | 0.5507 | 0.6982 | 0.6024 | 0.5819 | 0.5782 | 0.2870 | 0.3850 | 0.3781 | 0.4469 | 0.4259 | 0.2696 | 0.4177 | 0.1885 | 0.3802 | 0.7040 | 0.7880683884343289 | 0.731396380419234 | 0.4432030312072782 | 0.5429096426914529 | 0.5308232228468566 | 0.5705141628184882 | 0.5124069040223462 | 0.4618798967196969 | 0.5667018365346953 | 0.24654054169867742 | 0.5101 |
| 0.3841 | 37.0 | 6993 | 1.0646 | 0.4102 | 0.5423 | 0.7000 | 0.6099 | 0.5822 | 0.5787 | 0.2920 | 0.3827 | 0.3739 | 0.4416 | 0.4271 | 0.2646 | 0.4200 | 0.1864 | 0.3637 | 0.7277 | 0.7884122256315795 | 0.729836073619772 | 0.4325369012012408 | 0.5471377026662912 | 0.5196269856535736 | 0.5522782843080914 | 0.5072885672621452 | 0.439025580508061 | 0.561369507359334 | 0.2452978608136193 | 0.4575 |
| 0.383 | 38.0 | 7182 | 1.0769 | 0.4076 | 0.5463 | 0.6981 | 0.6028 | 0.5823 | 0.5799 | 0.2887 | 0.3828 | 0.3770 | 0.4470 | 0.4238 | 0.2639 | 0.4197 | 0.1617 | 0.3610 | 0.7092 | 0.7907447078742033 | 0.7296691424790102 | 0.4712736205855615 | 0.5625548260053038 | 0.5483289116967108 | 0.5667000971425602 | 0.5066724810915119 | 0.455165346086617 | 0.5607817202915882 | 0.20023996596401122 | 0.4545 |
| 0.3831 | 39.0 | 7371 | 1.0821 | 0.4081 | 0.5438 | 0.6949 | 0.5856 | 0.5809 | 0.5772 | 0.2889 | 0.3772 | 0.3683 | 0.4493 | 0.4296 | 0.2665 | 0.4112 | 0.1902 | 0.3723 | 0.6763 | 0.800011657964694 | 0.7344553579046461 | 0.4677864830917204 | 0.5543661252778019 | 0.5005189827937243 | 0.5817658533666903 | 0.523601457606307 | 0.40713201955582373 | 0.5435867319717048 | 0.24956460257167606 | 0.4865 |
| 0.3701 | 40.0 | 7560 | 1.0971 | 0.4094 | 0.5503 | 0.6939 | 0.5830 | 0.5808 | 0.5785 | 0.2947 | 0.3803 | 0.3832 | 0.4496 | 0.4284 | 0.2675 | 0.4111 | 0.1913 | 0.3644 | 0.6681 | 0.8019720069792564 | 0.7232036283125487 | 0.45190179110485007 | 0.5723541197754489 | 0.546477994040771 | 0.5827900224986577 | 0.5131837083244492 | 0.46864546640284643 | 0.5478759607606497 | 0.25889083079032665 | 0.4678 |
| 0.3728 | 41.0 | 7749 | 1.0850 | 0.4073 | 0.5426 | 0.6955 | 0.5853 | 0.5827 | 0.5786 | 0.2921 | 0.3809 | 0.3712 | 0.4464 | 0.4330 | 0.2670 | 0.4180 | 0.1631 | 0.3694 | 0.6698 | 0.802245750865899 | 0.7318241236329124 | 0.42969167458935054 | 0.5493256781204481 | 0.5160249547251025 | 0.5726640520570764 | 0.5288880126774462 | 0.4574478940223419 | 0.5711251037232947 | 0.19784948869497082 | 0.4842 |
| 0.3693 | 42.0 | 7938 | 1.0969 | 0.4065 | 0.5503 | 0.6922 | 0.5756 | 0.5804 | 0.5766 | 0.2872 | 0.3775 | 0.3786 | 0.4480 | 0.4396 | 0.2669 | 0.4132 | 0.1619 | 0.3729 | 0.6542 | 0.7976682615387576 | 0.7308713320448722 | 0.44501773061949607 | 0.5653019507421896 | 0.538869270774736 | 0.5873936666829358 | 0.56251667450614 | 0.4661854609016619 | 0.5560663849947923 | 0.19690370447456942 | 0.5024 |
| 0.3627 | 43.0 | 8127 | 1.0932 | 0.4087 | 0.5497 | 0.6948 | 0.5872 | 0.5821 | 0.5762 | 0.2896 | 0.3820 | 0.3742 | 0.4499 | 0.4346 | 0.2685 | 0.4164 | 0.1848 | 0.3597 | 0.6732 | 0.7995246428515413 | 0.7126413100641786 | 0.43433425167070316 | 0.563626528797201 | 0.5217319508309168 | 0.5951934113097872 | 0.5607702041441706 | 0.46790458106705235 | 0.5671581929537526 | 0.24491526201895852 | 0.4559 |
| 0.3707 | 44.0 | 8316 | 1.1095 | 0.4071 | 0.5449 | 0.6950 | 0.5894 | 0.5823 | 0.5774 | 0.2917 | 0.3801 | 0.3754 | 0.4476 | 0.4287 | 0.2635 | 0.4096 | 0.1911 | 0.3478 | 0.6797 | 0.803457548596816 | 0.7234216375288598 | 0.45707177604596777 | 0.5651155676479467 | 0.535205542591067 | 0.5728081127420495 | 0.5155644795786185 | 0.4590960311615485 | 0.5458174021480566 | 0.2506389399870835 | 0.4307 |
| 0.3715 | 45.0 | 8505 | 1.0884 | 0.4110 | 0.5481 | 0.6962 | 0.5912 | 0.5809 | 0.5791 | 0.2980 | 0.3817 | 0.3750 | 0.4483 | 0.4349 | 0.2677 | 0.4155 | 0.1909 | 0.3686 | 0.6866 | 0.7922721276173627 | 0.7332420395960666 | 0.4349206459358367 | 0.5523381961763103 | 0.5312496597577838 | 0.5854673470319562 | 0.5314412880593928 | 0.4323043752162764 | 0.5652806122582028 | 0.24881776972449826 | 0.4833 |
| 0.3637 | 46.0 | 8694 | 1.0893 | 0.4116 | 0.5565 | 0.6948 | 0.5922 | 0.5794 | 0.5788 | 0.2952 | 0.3804 | 0.3754 | 0.4487 | 0.4356 | 0.2641 | 0.4159 | 0.2068 | 0.3666 | 0.6868 | 0.7855706573717709 | 0.7296848368597656 | 0.4425784692680828 | 0.5763147605281125 | 0.5288216913032275 | 0.5846069190064064 | 0.5331374000735017 | 0.4572549089199045 | 0.5724143758009055 | 0.2998656313033151 | 0.4811 |
| 0.3581 | 47.0 | 8883 | 1.1164 | 0.4080 | 0.5443 | 0.6938 | 0.5748 | 0.5822 | 0.5779 | 0.2909 | 0.3849 | 0.3751 | 0.4487 | 0.4350 | 0.2687 | 0.4150 | 0.1785 | 0.3643 | 0.6506 | 0.8100174578425522 | 0.7248255712255228 | 0.4533868606047147 | 0.550595919425778 | 0.5230221493146161 | 0.5953540035487735 | 0.5514560526984038 | 0.42514396244997915 | 0.5546477684692658 | 0.22449979033586054 | 0.4677 |
| 0.3595 | 48.0 | 9072 | 1.1264 | 0.4056 | 0.5374 | 0.6942 | 0.5787 | 0.5823 | 0.5789 | 0.2896 | 0.3819 | 0.3750 | 0.4479 | 0.4224 | 0.2665 | 0.4140 | 0.1723 | 0.3580| 0.6590 | 0.8105713324342202 | 0.7333610315374302 | 0.4352710945794963 | 0.5541979753123436 | 0.5253811620133629 | 0.5813399690466331 | 0.48688700765339743 | 0.43734195185576247 | 0.5611134262144687 | 0.21352685690499001 | 0.4503 |
| 0.3604 | 49.0 | 9261 | 1.0948 | 0.4104 | 0.5508 | 0.6953 | 0.5878 | 0.5812 | 0.5782 | 0.2930 | 0.3807 | 0.3796 | 0.4482 | 0.4364 | 0.2659 | 0.4139 | 0.1915 | 0.3678 | 0.6790 | 0.7967062773369975 | 0.7227093979949429 | 0.44773110526644505 | 0.5612015226688438 | 0.5522702775287709 | 0.5861175881564799 | 0.5459659213274032 | 0.4310488629406493 | 0.5518188802213042 | 0.25352220450364693 | 0.4817 |
| 0.3541 | 50.0 | 9450 | 1.0863 | 0.4097 | 0.5538 | 0.6951 | 0.5922 | 0.5796 | 0.5785 | 0.2917 | 0.3793 | 0.3797 | 0.4481 | 0.4354 | 0.2647 | 0.4174 | 0.1817 | 0.3681 | 0.6884 | 0.7851625477616788 | 0.7322992353412343 | 0.45229387721112274 | 0.5829333862769369 | 0.5516333441001092 | 0.5904157921999404 | 0.5288772981353482 | 0.4518224891972707 | 0.571864661897264 | 0.23178753217655862 | 0.4783 |
* All values in the above chart are rounded to nearest ten-thousandth.
### Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.12.1