|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: mega-base-wikitext-News_About_Gold |
|
results: [] |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# mega-base-wikitext-News_About_Gold |
|
|
|
This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0031 |
|
- Accuracy: 0.5014 |
|
- F1 |
|
- Weighted: 0.4023 |
|
- Micro: 0.5014 |
|
- Macro: 0.3282 |
|
- Recall |
|
- Weighted: 0.5014 |
|
- Micro: 0.5014 |
|
- Macro: 0.3835 |
|
- Precision |
|
- Weighted: 0.5783 |
|
- Micro: 0.5014 |
|
- Macro: 0.4548 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Sentiment%20Analysis/Sentiment%20Analysis%20of%20Commodity%20News%20-%20Gold%20(Transformer%20Comparison)/News%20About%20Gold%20-%20Sentiment%20Analysis%20-%20MEGA%20with%20W%26B.ipynb |
|
|
|
This project is part of a comparison of seven (7) transformers. Here is the README page for the comparison: https://github.com/DunnBC22/NLP_Projects/tree/main/Sentiment%20Analysis/Sentiment%20Analysis%20of%20Commodity%20News%20-%20Gold%20(Transformer%20Comparison) |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-in-commodity-market-gold |
|
|
|
_Input Word Length:_ |
|
|
|
![Length of Input Text (in Words)](https://github.com/DunnBC22/NLP_Projects/raw/main/Sentiment%20Analysis/Sentiment%20Analysis%20of%20Commodity%20News%20-%20Gold%20(Transformer%20Comparison)/Images/Input%20Word%20Length.png) |
|
|
|
_Class Distribution:_ |
|
|
|
![Length of Input Text (in Words)](https://github.com/DunnBC22/NLP_Projects/raw/main/Sentiment%20Analysis/Sentiment%20Analysis%20of%20Commodity%20News%20-%20Gold%20(Transformer%20Comparison)/Images/Class%20Distribution.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 1.2255 | 1.0 | 133 | 1.1365 | 0.4134 | 0.2437 | 0.4134 | 0.1487 | 0.4134 | 0.4134 | 0.2507 | 0.2652 | 0.4134 | 0.2285 | |
|
| 1.1337 | 2.0 | 266 | 1.0851 | 0.4532 | 0.3257 | 0.4532 | 0.2539 | 0.4532 | 0.4532 | 0.3161 | 0.3015 | 0.4532 | 0.2705 | |
|
| 1.0847 | 3.0 | 399 | 1.0384 | 0.4759 | 0.3591 | 0.4759 | 0.2915 | 0.4759 | 0.4759 | 0.3520 | 0.6352 | 0.4759 | 0.4942 | |
|
| 1.05 | 4.0 | 532 | 1.0112 | 0.4962 | 0.3917 | 0.4962 | 0.3206 | 0.4962 | 0.4962 | 0.3783 | 0.5846 | 0.4962 | 0.4596 | |
|
| 1.0309 | 5.0 | 665 | 1.0031 | 0.5014 | 0.4023 | 0.5014 | 0.3282 | 0.5014 | 0.5014 | 0.3835 | 0.5783 | 0.5014 | 0.4548 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |