DunnBC22's picture
update model card README.md
394e351
|
raw
history blame
1.91 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: ernie-2.0-base-en-Tweet_About_Disaster_Or_Not
    results: []

ernie-2.0-base-en-Tweet_About_Disaster_Or_Not

This model is a fine-tuned version of nghuyong/ernie-2.0-base-en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3622
  • Accuracy: 0.9120
  • F1: 0.7788
  • Recall: 0.8341
  • Precision: 0.7303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.347 1.0 143 0.2663 0.8777 0.7342 0.9100 0.6154
0.2192 2.0 286 0.2292 0.9156 0.7876 0.8436 0.7386
0.132 3.0 429 0.2629 0.9129 0.7843 0.8531 0.7258
0.0767 4.0 572 0.3266 0.9120 0.7807 0.8436 0.7265
0.0532 5.0 715 0.3622 0.9120 0.7788 0.8341 0.7303

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.9.0
  • Tokenizers 0.12.1