DunnBC22 commited on
Commit
19d2776
·
1 Parent(s): 8edd809

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: efficientformer-l3-300-Brain_Tumors_Image_Classification
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.7817258883248731
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # efficientformer-l3-300-Brain_Tumors_Image_Classification
31
+
32
+ This model is a fine-tuned version of [snap-research/efficientformer-l3-300](https://huggingface.co/snap-research/efficientformer-l3-300) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 2.2761
35
+ - Accuracy: 0.7817
36
+ - Weighted f1: 0.7381
37
+ - Micro f1: 0.7817
38
+ - Macro f1: 0.7465
39
+ - Weighted recall: 0.7817
40
+ - Micro recall: 0.7817
41
+ - Macro recall: 0.7771
42
+ - Weighted precision: 0.8442
43
+ - Micro precision: 0.7817
44
+ - Macro precision: 0.8613
45
+
46
+ ## Model description
47
+
48
+ More information needed
49
+
50
+ ## Intended uses & limitations
51
+
52
+ More information needed
53
+
54
+ ## Training and evaluation data
55
+
56
+ More information needed
57
+
58
+ ## Training procedure
59
+
60
+ ### Training hyperparameters
61
+
62
+ The following hyperparameters were used during training:
63
+ - learning_rate: 0.0002
64
+ - train_batch_size: 16
65
+ - eval_batch_size: 8
66
+ - seed: 42
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - num_epochs: 3
70
+
71
+ ### Training results
72
+
73
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
74
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
75
+ | 1.2856 | 1.0 | 180 | 1.4677 | 0.7284 | 0.6798 | 0.7284 | 0.6829 | 0.7284 | 0.7284 | 0.7133 | 0.8156 | 0.7284 | 0.8350 |
76
+ | 1.2856 | 2.0 | 360 | 2.1421 | 0.7563 | 0.7146 | 0.7563 | 0.7211 | 0.7563 | 0.7563 | 0.7471 | 0.8381 | 0.7563 | 0.8551 |
77
+ | 0.1405 | 3.0 | 540 | 2.2761 | 0.7817 | 0.7381 | 0.7817 | 0.7465 | 0.7817 | 0.7817 | 0.7771 | 0.8442 | 0.7817 | 0.8613 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.28.1
83
+ - Pytorch 2.0.0
84
+ - Datasets 2.11.0
85
+ - Tokenizers 0.13.3