|
--- |
|
language: |
|
- sr |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- model_for_talk |
|
- mozilla-foundation/common_voice_8_0 |
|
- robust-speech-event |
|
- sr |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-sr-v4 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: sr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 0.303313 |
|
- name: Test CER |
|
type: cer |
|
value: 0.1048951 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: sr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 0.9486784706184245 |
|
- name: Test CER |
|
type: cer |
|
value: 0.8084369606584945 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: sr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 94.53 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-sr-v4 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5570 |
|
- Wer: 0.3038 |
|
|
|
### Evaluation Commands |
|
|
|
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split |
|
|
|
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs |
|
|
|
2. To evaluate on speech-recognition-community-v2/dev_data |
|
|
|
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1 |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 800 |
|
- num_epochs: 200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 8.2934 | 7.5 | 300 | 2.9777 | 0.9995 | |
|
| 1.5049 | 15.0 | 600 | 0.5036 | 0.4806 | |
|
| 0.3263 | 22.5 | 900 | 0.5822 | 0.4055 | |
|
| 0.2008 | 30.0 | 1200 | 0.5609 | 0.4032 | |
|
| 0.1543 | 37.5 | 1500 | 0.5203 | 0.3710 | |
|
| 0.1158 | 45.0 | 1800 | 0.6458 | 0.3985 | |
|
| 0.0997 | 52.5 | 2100 | 0.6227 | 0.4013 | |
|
| 0.0834 | 60.0 | 2400 | 0.6048 | 0.3836 | |
|
| 0.0665 | 67.5 | 2700 | 0.6197 | 0.3686 | |
|
| 0.0602 | 75.0 | 3000 | 0.5418 | 0.3453 | |
|
| 0.0524 | 82.5 | 3300 | 0.5310 | 0.3486 | |
|
| 0.0445 | 90.0 | 3600 | 0.5599 | 0.3374 | |
|
| 0.0406 | 97.5 | 3900 | 0.5958 | 0.3327 | |
|
| 0.0358 | 105.0 | 4200 | 0.6017 | 0.3262 | |
|
| 0.0302 | 112.5 | 4500 | 0.5613 | 0.3248 | |
|
| 0.0285 | 120.0 | 4800 | 0.5659 | 0.3462 | |
|
| 0.0213 | 127.5 | 5100 | 0.5568 | 0.3206 | |
|
| 0.0215 | 135.0 | 5400 | 0.6524 | 0.3472 | |
|
| 0.0162 | 142.5 | 5700 | 0.6223 | 0.3458 | |
|
| 0.0137 | 150.0 | 6000 | 0.6625 | 0.3313 | |
|
| 0.0114 | 157.5 | 6300 | 0.5739 | 0.3336 | |
|
| 0.0101 | 165.0 | 6600 | 0.5906 | 0.3285 | |
|
| 0.008 | 172.5 | 6900 | 0.5982 | 0.3112 | |
|
| 0.0076 | 180.0 | 7200 | 0.5399 | 0.3094 | |
|
| 0.0071 | 187.5 | 7500 | 0.5387 | 0.2991 | |
|
| 0.0057 | 195.0 | 7800 | 0.5570 | 0.3038 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.2 |
|
- Tokenizers 0.11.0 |
|
|