metadata
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- hi
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: wav2vec2-large-xls-r-300m-hi-d3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: vot
metrics:
- name: Test WER
type: wer
value: 0.4204111781361566
- name: Test CER
type: cer
value: 0.13869169624556316
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: hi
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: hi
metrics:
- name: Test WER
type: wer
value: 42.04
wav2vec2-large-xls-r-300m-hi-d3
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set:
- Loss: 0.7988
- Wer: 0.3713
###Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
Hindi language isn't available in speech-recognition-community-v2/dev_data
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000388
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 750
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.2826 | 1.36 | 200 | 3.5253 | 1.0 |
2.7019 | 2.72 | 400 | 1.1744 | 0.7360 |
0.7358 | 4.08 | 600 | 0.7781 | 0.5501 |
0.4942 | 5.44 | 800 | 0.7590 | 0.5345 |
0.4056 | 6.8 | 1000 | 0.6885 | 0.4776 |
0.3243 | 8.16 | 1200 | 0.7195 | 0.4861 |
0.2785 | 9.52 | 1400 | 0.7473 | 0.4930 |
0.2448 | 10.88 | 1600 | 0.7201 | 0.4574 |
0.2155 | 12.24 | 1800 | 0.7686 | 0.4648 |
0.2039 | 13.6 | 2000 | 0.7440 | 0.4624 |
0.1792 | 14.96 | 2200 | 0.7815 | 0.4658 |
0.1695 | 16.33 | 2400 | 0.7678 | 0.4557 |
0.1598 | 17.68 | 2600 | 0.7468 | 0.4393 |
0.1568 | 19.05 | 2800 | 0.7440 | 0.4422 |
0.1391 | 20.41 | 3000 | 0.7656 | 0.4317 |
0.1283 | 21.77 | 3200 | 0.7892 | 0.4299 |
0.1194 | 23.13 | 3400 | 0.7646 | 0.4192 |
0.1116 | 24.49 | 3600 | 0.8156 | 0.4330 |
0.1111 | 25.85 | 3800 | 0.7661 | 0.4322 |
0.1023 | 27.21 | 4000 | 0.7419 | 0.4276 |
0.1007 | 28.57 | 4200 | 0.8488 | 0.4245 |
0.0925 | 29.93 | 4400 | 0.8062 | 0.4070 |
0.0918 | 31.29 | 4600 | 0.8412 | 0.4218 |
0.0813 | 32.65 | 4800 | 0.8045 | 0.4087 |
0.0805 | 34.01 | 5000 | 0.8411 | 0.4113 |
0.0774 | 35.37 | 5200 | 0.7664 | 0.3943 |
0.0666 | 36.73 | 5400 | 0.8082 | 0.3939 |
0.0655 | 38.09 | 5600 | 0.7948 | 0.4000 |
0.0617 | 39.45 | 5800 | 0.8084 | 0.3932 |
0.0606 | 40.81 | 6000 | 0.8223 | 0.3841 |
0.0569 | 42.18 | 6200 | 0.7892 | 0.3832 |
0.0544 | 43.54 | 6400 | 0.8326 | 0.3834 |
0.0508 | 44.89 | 6600 | 0.7952 | 0.3774 |
0.0492 | 46.26 | 6800 | 0.7923 | 0.3756 |
0.0459 | 47.62 | 7000 | 0.7925 | 0.3701 |
0.0423 | 48.98 | 7200 | 0.7988 | 0.3713 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0