|
--- |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- patent-classification |
|
metrics: |
|
- accuracy |
|
base_model: NousResearch/Llama-2-7b-hf |
|
model-index: |
|
- name: llama-2-7b-flash-attention2-lora-patent-classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama-2-7b-flash-attention2-lora-patent-classification |
|
|
|
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the patent-classification dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5598 |
|
- Accuracy: 0.436 |
|
- Precision Macro: 0.4276 |
|
- Recall Macro: 0.3658 |
|
- F1-score Macro: 0.3707 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1-score Macro | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:--------------:| |
|
| 1.4059 | 1.0 | 6250 | 1.9046 | 0.3748 | 0.3815 | 0.3173 | 0.3012 | |
|
| 1.1153 | 2.0 | 12500 | 1.6457 | 0.419 | 0.4162 | 0.3461 | 0.3466 | |
|
| 1.0234 | 3.0 | 18750 | 1.5598 | 0.436 | 0.4276 | 0.3658 | 0.3707 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.2.dev0 |
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.2.dev0 |
|
- Tokenizers 0.15.0 |