DreamOn-v0-7B / generation_utils.py
root
upload model and tokenizer
8ccc747
# coding=utf-8
import warnings
import copy
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.distributions as dists
from torch.nn import functional as F
from transformers import __version__
from transformers.generation.configuration_utils import (
GenerationConfig
)
from transformers.utils import (
ModelOutput,
is_torchdynamo_compiling,
logging,
)
logger = logging.get_logger(__name__)
def top_p_logits(logits, top_p=None):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
return logits
def top_k_logits(logits, top_k=None):
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
return logits
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
if temperature > 0:
logits = logits / temperature
if top_p is not None and top_p < 1:
logits = top_p_logits(logits, top_p)
if top_k is not None:
logits = top_k_logits(logits, top_k)
probs = torch.softmax(logits, dim=-1)
if temperature > 0:
try:
x0 = dists.Categorical(probs=probs).sample()
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except:
confidence, x0 = probs.max(dim=-1)
else:
confidence, x0 = probs.max(dim=-1)
if margin_confidence:
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
# Extract top1 and top2 probabilities
top1_probs = sorted_probs[:, 0]
top2_probs = sorted_probs[:, 1]
# Calculate confidence as top1 - top2
confidence = top1_probs - top2_probs
if neg_entropy:
epsilon = 1e-10
log_probs = torch.log(probs + epsilon)
confidence = torch.sum(probs * log_probs, dim=-1)
return confidence, x0
@dataclass
class DreamModelOutput(ModelOutput):
sequences: torch.LongTensor = None
history: Optional[Tuple[torch.FloatTensor]] = None
class DreamGenerationConfig(GenerationConfig):
def __init__(self, **kwargs):
self.temperature: float = kwargs.pop("temperature", 0.0)
self.top_p: Optional[float] = kwargs.pop("top_p", None)
self.top_k: Optional[int] = kwargs.pop("top_k", None)
self.max_length = kwargs.pop("max_length", 20)
self.max_new_tokens = kwargs.pop("max_new_tokens", None)
# diffusion specific params
self.eps: float = kwargs.pop("eps", 1e-3)
self.alg: str = kwargs.pop("alg", 'entropy')
self.alg_temp: Optional[float] = kwargs.pop("alg_temp", None) # for maskgit_plus
self.number_transfer_tokens = kwargs.pop("number_transfer_tokens", 1)
# Parameters that control expand and deletion process
self.expand_budget = kwargs.pop("expand_budget", None)
self.pad_delete_to_right = kwargs.pop("pad_delete_to_right", False)
# Parameters that define the output variables of `generate`
self.num_return_sequences: int = kwargs.pop("num_return_sequences", 1)
self.return_dict_in_generate: bool = kwargs.pop("return_dict_in_generate", False)
self.output_history: bool = kwargs.pop("output_history", False)
# Special tokens that can be used at generation time
self.mask_token_id = kwargs.pop("mask_token_id", None)
self.expand_token_id = kwargs.pop("expand_token_id", None)
self.delete_token_id = kwargs.pop("eos_token_id", None)
self.pad_token_id = kwargs.pop("pad_token_id", None)
self.bos_token_id = kwargs.pop("bos_token_id", None)
self.eos_token_id = kwargs.pop("eos_token_id", None)
# Wild card
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
# interface.
self._from_model_config = kwargs.pop("_from_model_config", False)
self._commit_hash = kwargs.pop("_commit_hash", None)
self.transformers_version = kwargs.pop("transformers_version", __version__)
# Additional attributes without default values
if not self._from_model_config:
# we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
# model's default configuration file
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
logger.error(f"Can't set {key} with value {value} for {self}")
raise err
# Validate the values of the attributes
self.validate(is_init=True)
def validate(self, is_init=False):
pass
class DreamGenerationMixin:
@staticmethod
def _expand_inputs_for_generation(
expand_size: int = 1,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
# Do not call torch.repeat_interleave if expand_size is 1 because it clones
# the input tensor and thus requires more memory although no change is applied
if expand_size == 1:
return input_ids, attention_mask
if input_ids is not None:
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
if attention_mask is not None:
attention_mask = attention_mask.repeat_interleave(expand_size, dim=0)
return input_ids, attention_mask
def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
"""Performs validation related to the resulting generated length"""
# Can't throw warnings/exceptions during compilation
if is_torchdynamo_compiling():
return
# 1. Max length warnings related to poor parameterization
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
# 20 is the default max_length of the generation config
warnings.warn(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
"generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
"generation.",
UserWarning,
)
## INFILLING:We change the condition from >= to = to enable infilling without any expansion.
if input_ids_length > generation_config.max_length:
input_ids_string = "input_ids"
raise ValueError(
f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_length` or, better yet, setting `max_new_tokens`."
)
def _prepare_generated_length(
self,
generation_config,
has_default_max_length,
input_ids_length,
num_mask_tokens
):
"""Prepared max and min length in generation configs to avoid clashes between similar attributes"""
if generation_config.max_new_tokens is not None:
if not has_default_max_length and generation_config.max_length is not None:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_length - num_mask_tokens
elif has_default_max_length: # by default let's always generate 32 new tokens at maximum
if generation_config.max_length == DreamGenerationConfig().max_length:
generation_config.max_length = generation_config.max_length + input_ids_length
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
if max_position_embeddings is not None:
generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
return generation_config
def _prepare_generation_config(
self, generation_config: Optional[DreamGenerationConfig], **kwargs: Dict
) -> DreamGenerationConfig:
"""
Prepares the base generation config, then applies any generation configuration options from kwargs. This
function handles retrocompatibility with respect to configuration files.
"""
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
using_model_generation_config = False
if generation_config is None:
generation_config = DreamGenerationConfig.from_model_config(self.config)
using_model_generation_config = True
# `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
# will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an
# exception will be raised in `_validate_model_kwargs`
if not is_torchdynamo_compiling():
generation_config = copy.deepcopy(generation_config)
_kwargs = generation_config.update(**kwargs)
# If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model
if not using_model_generation_config:
if generation_config.bos_token_id is None:
generation_config.bos_token_id = self.generation_config.bos_token_id
if generation_config.eos_token_id is None:
generation_config.eos_token_id = self.generation_config.eos_token_id
if generation_config.pad_token_id is None:
generation_config.pad_token_id = self.generation_config.pad_token_id
if generation_config.mask_token_id is None:
generation_config.mask_token_id = self.generation_config.mask_token_id
if generation_config.expand_token_id is None:
generation_config.expand_token_id = self.generation_config.expand_token_id
return generation_config
def _prepare_special_tokens(
self,
generation_config: DreamGenerationConfig,
device: Optional[Union[torch.device, str]] = None,
):
"""
Prepares the special tokens for generation, overwriting the generation config with their processed versions
converted to tensor.
Note that `generation_config` is changed in place and stops being serializable after this method is called.
That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
"""
# Convert special tokens to tensors
def _tensor_or_none(token, device=None):
if token is None:
return token
device = device if device is not None else self.device
if isinstance(token, torch.Tensor):
return token.to(device)
return torch.tensor(token, device=device, dtype=torch.long)
bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device)
eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device)
pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device)
mask_token_tensor = _tensor_or_none(generation_config.mask_token_id, device=device)
expand_token_tensor = _tensor_or_none(generation_config.expand_token_id, device=device)
# We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
if eos_token_tensor is not None and eos_token_tensor.ndim == 0:
eos_token_tensor = eos_token_tensor.unsqueeze(0)
# Set pad token if unset (and there are conditions to do so)
if pad_token_tensor is None and eos_token_tensor is not None:
pad_token_tensor = eos_token_tensor[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.")
# Update generation config with the updated special tokens tensors
# NOTE: this must be written into a different attribute name than the one holding the original special tokens
# (in their non-tensor form), in order to enable end-to-end compilation. See
# https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations
generation_config._bos_token_tensor = bos_token_tensor
generation_config._eos_token_tensor = eos_token_tensor
generation_config._pad_token_tensor = pad_token_tensor
generation_config._mask_token_tensor = mask_token_tensor
generation_config._expand_token_tensor = expand_token_tensor
@torch.no_grad()
def diffusion_generate(
self,
inputs: Optional[torch.Tensor] = None, # prefix, mask, suffix
generation_config: Optional[DreamGenerationConfig] = None,
**kwargs,
) -> Union[DreamModelOutput, torch.LongTensor]:
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria
generation_config = self._prepare_generation_config(generation_config, **kwargs)
# 2. Define model inputs
assert inputs is not None
input_ids = inputs
device = input_ids.device
attention_mask = kwargs.pop("attention_mask", None)
assert attention_mask is None, 'We currently do not support attention_mask for DreamOn since we recompute attention mask after each denoising step.'
self._prepare_special_tokens(generation_config, device=device)
# 3. Prepare `max_length`.
input_ids_length = input_ids.shape[-1]
## get number of mask tokens as start_gen_len
mask_token_id = generation_config.mask_token_id
mask_token_indices = torch.where(input_ids == mask_token_id)[1]
if mask_token_indices.numel() == 0:
raise ValueError("No mask tokens found in the input_ids.")
num_mask_tokens = mask_token_indices.numel()
## get the first index of mask
mask_token_index = mask_token_indices[0]
## assign it as prefix_len
prefix_len = mask_token_index
start_gen_len = num_mask_tokens # Ensure start_gen_len is defined
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
input_ids_length=input_ids_length,
num_mask_tokens=num_mask_tokens,
)
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
# 4. Check input_ids
if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type:
warnings.warn(
"You are calling .generate() with the `input_ids` being on a device type different"
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
" Please make sure that you have put `input_ids` to the"
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
" running `.generate()`.",
UserWarning,
)
result = self._sample(
input_ids,
prefix_len,
start_gen_len,
generation_config=generation_config,
)
return result
def _sample(
self,
input_ids: torch.LongTensor,
prefix_len: int,
start_gen_len: int,
generation_config: DreamGenerationConfig,
) -> Union[DreamModelOutput, torch.LongTensor]:
# init values
output_history = generation_config.output_history
return_dict_in_generate = generation_config.return_dict_in_generate
pad_delete_to_right = generation_config.pad_delete_to_right
eps = generation_config.eps
alg = generation_config.alg
alg_temp = generation_config.alg_temp
temperature = generation_config.temperature
top_p = generation_config.top_p
top_k = generation_config.top_k
device = input_ids.device
num_generation_tokens = start_gen_len
max_length = generation_config.max_length
max_gen_len = max_length - prefix_len
expand_budget = generation_config.expand_budget
if expand_budget is None:
expand_budget = max_gen_len * 2
number_transfer_tokens = generation_config.number_transfer_tokens
eos_token_id = generation_config.eos_token_id
delete_token_id = generation_config.delete_token_id
expand_token_id = generation_config.expand_token_id
mask_token_id = generation_config.mask_token_id
histories = [] if (return_dict_in_generate and output_history) else None
# pad input_ids to max_length
x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=eos_token_id)
for i in range(2 * max_gen_len + 2 * expand_budget):
#### 1. --- Prepare Input ---
current_window_length = input_ids.shape[1] - start_gen_len + num_generation_tokens
attention_mask = torch.ones([input_ids.shape[0], current_window_length], dtype=torch.int16).to(device)
attention_mask = F.pad(attention_mask, (0, max_length - attention_mask.shape[1]), value=0)
mask_index = (x == mask_token_id) & (attention_mask == 1)
if torch.all(~mask_index[:, :current_window_length]):
break # exit if all mask tokens are denoised
tok_idx = attention_mask.long().cumsum(-1) - 1
tok_idx.masked_fill_(attention_mask == 0, 1)
attention_mask = torch.logical_and(
attention_mask.unsqueeze(1).unsqueeze(-2),
attention_mask.unsqueeze(1).unsqueeze(-1),
)
output = self(x, attention_mask, tok_idx)
logits = output.logits
logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1)
logits = logits[mask_index]
# block the logit for expansion when token budget is all used
if current_window_length == max_length or expand_budget == 0:
logits[:, expand_token_id] -= 1e9
### 2. ----sample tokens
if alg == 'maskgit_plus':
confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k)
elif alg == 'topk_margin':
confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k, margin_confidence=True)
elif alg == 'entropy':
confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k, neg_entropy=True)
else:
raise RuntimeError(f"Unknown alg: {alg}")
if alg_temp is None or alg_temp == 0:
_, transfer_index = torch.topk(confidence, number_transfer_tokens)
else:
confidence = confidence / alg_temp
confidence = F.softmax(confidence, dim=-1)
transfer_index = torch.multinomial(confidence, num_samples=number_transfer_tokens)
x0_ = torch.zeros_like(x0, device=device, dtype=torch.long) + mask_token_id
x0_[transfer_index] = x0[transfer_index].clone()
x[mask_index] = x0_
if histories is not None:
histories.append(x[0,:current_window_length].clone())
### 3. ---- delete -------
# pad delete to right if needed
if pad_delete_to_right:
x_seq = x[0] # Flatten to 1D: shape [seq_len]
# Find indices where EOS occurs
delete_indices = (x_seq == delete_token_id).nonzero(as_tuple=True)
if len(delete_indices[0]) > 0:
# Get the first occurrence of delete
first_delete_idx = delete_indices[0][0].item()
position_mask = torch.arange(x_seq.size(0), device=device) >= first_delete_idx
replace_mask = position_mask & mask_index[0]
# Set all tokens after EOS to eos_id
x_seq.masked_fill_(replace_mask, delete_token_id)
x = x_seq.unsqueeze(0)
# delete
delete_indices = ((x[0] == delete_token_id) & (mask_index[0] == 1)).nonzero(as_tuple=False).squeeze(1)
if delete_indices.numel() > 0:
for idx in sorted(delete_indices.tolist(), reverse=True):
x = torch.cat((
x[:, :idx],
x[:, idx + 1:],
torch.tensor([[mask_token_id]], device=device)
), dim=1)
num_generation_tokens -= 1
if histories is not None:
current_window_length = input_ids.shape[1] - start_gen_len + num_generation_tokens
histories.append(x[0,:current_window_length].clone())
### 4. ---- expand --------
expand_indices = (x[0] == expand_token_id).nonzero(as_tuple=False).squeeze(1)
if expand_indices.numel() > 0:
# Process from right to left to prevent shifting issues
for idx in sorted(expand_indices.tolist(), reverse=True):
x = torch.cat((
x[:, :idx],
torch.tensor([[mask_token_id, mask_token_id]], device=device),
x[:, idx + 1:]
), dim=1)
num_generation_tokens += 1
expand_budget -= 1
# Truncate back to max_tokens if needed
if x.shape[1] > max_length:
x = x[:, :max_length]
if histories is not None:
current_window_length = input_ids.shape[1] - start_gen_len + num_generation_tokens
histories.append(x[0,:current_window_length].clone())
if return_dict_in_generate:
return DreamModelOutput(
sequences=x,
history=histories,
)
else:
return x