|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch SparkTTS model.""" |
|
|
|
import os |
|
import re |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
import torchaudio |
|
import numpy as np |
|
|
|
from pathlib import Path |
|
from typing import Optional, Union, Tuple, List, Dict, Any |
|
from collections import namedtuple |
|
from functools import wraps, partial |
|
from contextlib import nullcontext |
|
|
|
from huggingface_hub import snapshot_download |
|
from safetensors.torch import load_file |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation import GenerationMixin |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.models.auto.modeling_auto import AutoModelForCausalLM |
|
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model |
|
from transformers.models.wav2vec2.feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor |
|
from transformers.utils import logging |
|
from transformers import AutoTokenizer |
|
from einops import rearrange, repeat, pack, unpack |
|
from einops.layers.torch import Rearrange |
|
from packaging import version |
|
|
|
from torch import Tensor, int32, einsum |
|
from torch.amp import autocast |
|
from einops import rearrange, reduce, pack, unpack |
|
from numpy.lib.stride_tricks import sliding_window_view |
|
import soxr |
|
import soundfile |
|
|
|
|
|
from .configuration_spark_tts import SparkTTSConfig, SparkTTSBiCodecConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def WNConv1d(*args, **kwargs): |
|
return weight_norm(nn.Conv1d(*args, **kwargs)) |
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs): |
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) |
|
|
|
|
|
|
|
@torch.jit.script |
|
def snake(x, alpha): |
|
shape = x.shape |
|
x = x.reshape(shape[0], shape[1], -1) |
|
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2) |
|
x = x.reshape(shape) |
|
return x |
|
|
|
|
|
class Snake1d(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.alpha = nn.Parameter(torch.ones(1, channels, 1)) |
|
|
|
def forward(self, x): |
|
return snake(x, self.alpha) |
|
|
|
|
|
class ResidualUnit(nn.Module): |
|
def __init__(self, dim: int = 16, dilation: int = 1): |
|
super().__init__() |
|
pad = ((7 - 1) * dilation) // 2 |
|
self.block = nn.Sequential( |
|
Snake1d(dim), |
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), |
|
Snake1d(dim), |
|
WNConv1d(dim, dim, kernel_size=1), |
|
) |
|
|
|
def forward(self, x): |
|
y = self.block(x) |
|
pad = (x.shape[-1] - y.shape[-1]) // 2 |
|
if pad > 0: |
|
x = x[..., pad:-pad] |
|
return x + y |
|
|
|
|
|
def init_weights(m): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
class SamplingBlock(nn.Module): |
|
"""Sampling block for upsampling or downsampling""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
groups: int = 1, |
|
upsample_scale: int = 1, |
|
downsample_scale: int = 1, |
|
) -> None: |
|
""" |
|
Args: |
|
dim: input dimension |
|
groups: number of groups |
|
upsample_scale: upsampling scale |
|
downsample_scale: downsampling scale |
|
""" |
|
super(SamplingBlock, self).__init__() |
|
|
|
self.upsample_scale = upsample_scale |
|
self.downsample_scale = downsample_scale |
|
|
|
if self.upsample_scale > 1: |
|
self.de_conv_upsampler = nn.Sequential( |
|
nn.LeakyReLU(0.2), |
|
nn.ConvTranspose1d( |
|
dim, |
|
dim, |
|
kernel_size=upsample_scale * 2, |
|
stride=upsample_scale, |
|
padding=upsample_scale // 2 + upsample_scale % 2, |
|
output_padding=upsample_scale % 2, |
|
groups=groups, |
|
), |
|
) |
|
|
|
if self.downsample_scale > 1: |
|
self.conv_downsampler = nn.Sequential( |
|
nn.LeakyReLU(0.2), |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size=2 * downsample_scale, |
|
stride=downsample_scale, |
|
padding=downsample_scale // 2 + downsample_scale % 2, |
|
groups=groups, |
|
), |
|
) |
|
|
|
@staticmethod |
|
def repeat_upsampler(x, upsample_scale): |
|
return x.repeat_interleave(upsample_scale, dim=2) |
|
|
|
@staticmethod |
|
def skip_downsampler(x, downsample_scale): |
|
return F.avg_pool1d(x, kernel_size=downsample_scale, stride=downsample_scale) |
|
|
|
def forward(self, x): |
|
x = x.transpose(1, 2) |
|
if self.upsample_scale > 1: |
|
repeat_res = self.repeat_upsampler(x, self.upsample_scale) |
|
deconv_res = self.de_conv_upsampler(x) |
|
upmerge_res = repeat_res + deconv_res |
|
else: |
|
upmerge_res = x |
|
repeat_res = x |
|
|
|
if self.downsample_scale > 1: |
|
conv_res = self.conv_downsampler(upmerge_res) |
|
skip2_res = self.skip_downsampler(upmerge_res, self.downsample_scale) |
|
skip1_res = self.skip_downsampler(repeat_res, self.downsample_scale) |
|
else: |
|
conv_res = upmerge_res |
|
skip2_res = upmerge_res |
|
skip1_res = repeat_res |
|
|
|
final_res = conv_res + skip1_res + skip2_res |
|
|
|
return final_res |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
intermediate_dim (int): Dimensionality of the intermediate layer. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional LayerNorm. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
intermediate_dim: int, |
|
layer_scale_init_value: float, |
|
condition_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.dwconv = nn.Conv1d( |
|
dim, dim, kernel_size=7, padding=3, groups=dim |
|
) |
|
self.adanorm = condition_dim is not None |
|
if condition_dim: |
|
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear( |
|
dim, intermediate_dim |
|
) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(intermediate_dim, dim) |
|
self.gamma = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
|
|
def forward( |
|
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
residual = x |
|
x = self.dwconv(x) |
|
x = x.transpose(1, 2) |
|
if self.adanorm: |
|
assert cond_embedding_id is not None |
|
x = self.norm(x, cond_embedding_id) |
|
else: |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.transpose(1, 2) |
|
|
|
x = residual + x |
|
return x |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes |
|
|
|
Args: |
|
condition_dim (int): Dimension of the condition. |
|
embedding_dim (int): Dimension of the embeddings. |
|
""" |
|
|
|
def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.dim = embedding_dim |
|
self.scale = nn.Linear(condition_dim, embedding_dim) |
|
self.shift = nn.Linear(condition_dim, embedding_dim) |
|
torch.nn.init.ones_(self.scale.weight) |
|
torch.nn.init.zeros_(self.shift.weight) |
|
|
|
def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor: |
|
scale = self.scale(cond_embedding) |
|
shift = self.shift(cond_embedding) |
|
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) |
|
x = x * scale.unsqueeze(1) + shift.unsqueeze(1) |
|
return x |
|
|
|
|
|
class ResBlock1(nn.Module): |
|
""" |
|
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, |
|
but without upsampling layers. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. |
|
dilation (tuple[int], optional): Dilation factors for the dilated convolutions. |
|
Defaults to (1, 3, 5). |
|
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. |
|
Defaults to 0.1. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
kernel_size: int = 3, |
|
dilation: Tuple[int, int, int] = (1, 3, 5), |
|
lrelu_slope: float = 0.1, |
|
layer_scale_init_value: Optional[float] = None, |
|
): |
|
super().__init__() |
|
self.lrelu_slope = lrelu_slope |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=self.get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=self.get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=self.get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.gamma = nn.ParameterList( |
|
[ |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): |
|
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) |
|
xt = c1(xt) |
|
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) |
|
xt = c2(xt) |
|
if gamma is not None: |
|
xt = gamma * xt |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
@staticmethod |
|
def get_padding(kernel_size: int, dilation: int = 1) -> int: |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
class Backbone(nn.Module): |
|
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
""" |
|
Args: |
|
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, |
|
C denotes output features, and L is the sequence length. |
|
|
|
Returns: |
|
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, |
|
and H denotes the model dimension. |
|
""" |
|
raise NotImplementedError("Subclasses must implement the forward method.") |
|
|
|
|
|
class VocosBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. |
|
num_layers (int): Number of ConvNeXtBlock layers. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional model. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
dim: int, |
|
intermediate_dim: int, |
|
num_layers: int, |
|
layer_scale_init_value: Optional[float] = None, |
|
condition_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) |
|
self.adanorm = condition_dim is not None |
|
if condition_dim: |
|
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_layers |
|
self.convnext = nn.ModuleList( |
|
[ |
|
ConvNeXtBlock( |
|
dim=dim, |
|
intermediate_dim=intermediate_dim, |
|
layer_scale_init_value=layer_scale_init_value, |
|
condition_dim=condition_dim, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv1d, nn.Linear)): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor: |
|
x = self.embed(x) |
|
if self.adanorm: |
|
assert condition is not None |
|
x = self.norm(x.transpose(1, 2), condition) |
|
else: |
|
x = self.norm(x.transpose(1, 2)) |
|
x = x.transpose(1, 2) |
|
for conv_block in self.convnext: |
|
x = conv_block(x, condition) |
|
x = self.final_layer_norm(x.transpose(1, 2)) |
|
return x |
|
|
|
|
|
class VocosResNetBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ResBlocks. |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
num_blocks (int): Number of ResBlock1 blocks. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels, |
|
dim, |
|
num_blocks, |
|
layer_scale_init_value=None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = weight_norm( |
|
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) |
|
) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 |
|
self.resnet = nn.Sequential( |
|
*[ |
|
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) |
|
for _ in range(num_blocks) |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
x = self.embed(x) |
|
x = self.resnet(x) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
def exists(v): |
|
return v is not None |
|
|
|
|
|
def default(*args): |
|
for arg in args: |
|
if exists(arg): |
|
return arg |
|
return None |
|
|
|
|
|
def maybe(fn): |
|
@wraps(fn) |
|
def inner(x, *args, **kwargs): |
|
if not exists(x): |
|
return x |
|
return fn(x, *args, **kwargs) |
|
|
|
return inner |
|
|
|
|
|
def pack_one(t, pattern): |
|
return pack([t], pattern) |
|
|
|
|
|
def unpack_one(t, ps, pattern): |
|
return unpack(t, ps, pattern)[0] |
|
|
|
|
|
|
|
|
|
|
|
def round_ste(z: Tensor) -> Tensor: |
|
"""Round with straight through gradients.""" |
|
zhat = z.round() |
|
return z + (zhat - z).detach() |
|
|
|
|
|
|
|
|
|
|
|
class FSQ(nn.Module): |
|
def __init__( |
|
self, |
|
levels: List[int], |
|
dim: int | None = None, |
|
num_codebooks=1, |
|
keep_num_codebooks_dim: bool | None = None, |
|
scale: float | None = None, |
|
allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64), |
|
channel_first: bool = False, |
|
projection_has_bias: bool = True, |
|
return_indices=True, |
|
force_quantization_f32=True, |
|
): |
|
super().__init__() |
|
_levels = torch.tensor(levels, dtype=int32) |
|
self.register_buffer("_levels", _levels, persistent=False) |
|
|
|
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32) |
|
self.register_buffer("_basis", _basis, persistent=False) |
|
|
|
self.scale = scale |
|
|
|
codebook_dim = len(levels) |
|
self.codebook_dim = codebook_dim |
|
|
|
effective_codebook_dim = codebook_dim * num_codebooks |
|
self.num_codebooks = num_codebooks |
|
self.effective_codebook_dim = effective_codebook_dim |
|
|
|
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1) |
|
assert not (num_codebooks > 1 and not keep_num_codebooks_dim) |
|
self.keep_num_codebooks_dim = keep_num_codebooks_dim |
|
|
|
self.dim = default(dim, len(_levels) * num_codebooks) |
|
|
|
self.channel_first = channel_first |
|
|
|
has_projections = self.dim != effective_codebook_dim |
|
self.project_in = ( |
|
nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias) |
|
if has_projections |
|
else nn.Identity() |
|
) |
|
self.project_out = ( |
|
nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias) |
|
if has_projections |
|
else nn.Identity() |
|
) |
|
|
|
self.has_projections = has_projections |
|
|
|
self.return_indices = return_indices |
|
if return_indices: |
|
self.codebook_size = self._levels.prod().item() |
|
implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size)) |
|
self.register_buffer( |
|
"implicit_codebook", implicit_codebook, persistent=False |
|
) |
|
|
|
self.allowed_dtypes = allowed_dtypes |
|
self.force_quantization_f32 = force_quantization_f32 |
|
|
|
def bound(self, z, eps: float = 1e-3): |
|
"""Bound `z`, an array of shape (..., d).""" |
|
half_l = (self._levels - 1) * (1 + eps) / 2 |
|
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0) |
|
shift = (offset / half_l).atanh() |
|
return (z + shift).tanh() * half_l - offset |
|
|
|
def quantize(self, z): |
|
"""Quantizes z, returns quantized zhat, same shape as z.""" |
|
quantized = round_ste(self.bound(z)) |
|
half_width = self._levels // 2 |
|
return quantized / half_width |
|
|
|
def _scale_and_shift(self, zhat_normalized): |
|
half_width = self._levels // 2 |
|
return (zhat_normalized * half_width) + half_width |
|
|
|
def _scale_and_shift_inverse(self, zhat): |
|
half_width = self._levels // 2 |
|
return (zhat - half_width) / half_width |
|
|
|
def _indices_to_codes(self, indices): |
|
level_indices = self.indices_to_level_indices(indices) |
|
codes = self._scale_and_shift_inverse(level_indices) |
|
return codes |
|
|
|
def codes_to_indices(self, zhat): |
|
"""Converts a `code` to an index in the codebook.""" |
|
assert zhat.shape[-1] == self.codebook_dim |
|
zhat = self._scale_and_shift(zhat) |
|
return (zhat * self._basis).sum(dim=-1).to(int32) |
|
|
|
def indices_to_level_indices(self, indices): |
|
"""Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings""" |
|
indices = rearrange(indices, "... -> ... 1") |
|
codes_non_centered = (indices // self._basis) % self._levels |
|
return codes_non_centered |
|
|
|
def indices_to_codes(self, indices): |
|
"""Inverse of `codes_to_indices`.""" |
|
assert exists(indices) |
|
|
|
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) |
|
|
|
codes = self._indices_to_codes(indices) |
|
|
|
if self.keep_num_codebooks_dim: |
|
codes = rearrange(codes, "... c d -> ... (c d)") |
|
|
|
codes = self.project_out(codes) |
|
|
|
if is_img_or_video or self.channel_first: |
|
codes = rearrange(codes, "b ... d -> b d ...") |
|
|
|
return codes |
|
|
|
def forward(self, z): |
|
""" |
|
einstein notation |
|
b - batch |
|
n - sequence (or flattened spatial dimensions) |
|
d - feature dimension |
|
c - number of codebook dim |
|
""" |
|
|
|
is_img_or_video = z.ndim >= 4 |
|
need_move_channel_last = is_img_or_video or self.channel_first |
|
|
|
|
|
|
|
if need_move_channel_last: |
|
z = rearrange(z, "b d ... -> b ... d") |
|
z, ps = pack_one(z, "b * d") |
|
|
|
assert ( |
|
z.shape[-1] == self.dim |
|
), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}" |
|
|
|
z = self.project_in(z) |
|
|
|
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks) |
|
|
|
|
|
|
|
force_f32 = self.force_quantization_f32 |
|
quantization_context = ( |
|
partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext |
|
) |
|
|
|
with quantization_context(): |
|
orig_dtype = z.dtype |
|
|
|
if force_f32 and orig_dtype not in self.allowed_dtypes: |
|
z = z.float() |
|
|
|
codes = self.quantize(z) |
|
|
|
|
|
|
|
indices = None |
|
|
|
if self.return_indices: |
|
indices = self.codes_to_indices(codes) |
|
|
|
codes = rearrange(codes, "b n c d -> b n (c d)") |
|
|
|
codes = codes.type(orig_dtype) |
|
|
|
|
|
|
|
out = self.project_out(codes) |
|
|
|
|
|
|
|
if need_move_channel_last: |
|
out = unpack_one(out, ps, "b * d") |
|
out = rearrange(out, "b ... d -> b d ...") |
|
|
|
indices = maybe(unpack_one)(indices, ps, "b * c") |
|
|
|
if not self.keep_num_codebooks_dim and self.return_indices: |
|
indices = maybe(rearrange)(indices, "... 1 -> ...") |
|
|
|
|
|
|
|
return out, indices |
|
|
|
|
|
|
|
import random |
|
import torch.distributed as dist |
|
from einx import get_at |
|
|
|
def round_up_multiple(num, mult): |
|
return ceil(num / mult) * mult |
|
|
|
def is_distributed(): |
|
return dist.is_initialized() and dist.get_world_size() > 1 |
|
|
|
|
|
def get_maybe_sync_seed(device, max_size=10_000): |
|
rand_int = torch.randint(0, max_size, (), device=device) |
|
|
|
if is_distributed(): |
|
dist.all_reduce(rand_int) |
|
|
|
return rand_int.item() |
|
|
|
|
|
class ResidualFSQ(nn.Module): |
|
"""Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
levels: List[int], |
|
num_quantizers, |
|
dim=None, |
|
is_channel_first=False, |
|
quantize_dropout=False, |
|
quantize_dropout_cutoff_index=0, |
|
quantize_dropout_multiple_of=1, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
codebook_dim = len(levels) |
|
dim = default(dim, codebook_dim) |
|
|
|
requires_projection = codebook_dim != dim |
|
self.project_in = ( |
|
nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity() |
|
) |
|
self.project_out = ( |
|
nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity() |
|
) |
|
self.has_projections = requires_projection |
|
|
|
self.is_channel_first = is_channel_first |
|
self.num_quantizers = num_quantizers |
|
|
|
self.levels = levels |
|
self.layers = nn.ModuleList([]) |
|
|
|
levels_tensor = torch.Tensor(levels) |
|
|
|
scales = [] |
|
|
|
for ind in range(num_quantizers): |
|
scales.append((levels_tensor - 1) ** -ind) |
|
|
|
fsq = FSQ(levels=levels, dim=codebook_dim, **kwargs) |
|
|
|
self.layers.append(fsq) |
|
|
|
assert all([not fsq.has_projections for fsq in self.layers]) |
|
|
|
self.codebook_size = self.layers[0].codebook_size |
|
|
|
self.register_buffer("scales", torch.stack(scales), persistent=False) |
|
|
|
self.quantize_dropout = quantize_dropout and num_quantizers > 1 |
|
|
|
assert quantize_dropout_cutoff_index >= 0 |
|
|
|
self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index |
|
self.quantize_dropout_multiple_of = quantize_dropout_multiple_of |
|
|
|
@property |
|
def codebooks(self): |
|
codebooks = [layer.implicit_codebook for layer in self.layers] |
|
codebooks = torch.stack(codebooks, dim=0) |
|
return codebooks |
|
|
|
def get_codes_from_indices(self, indices): |
|
|
|
batch, quantize_dim = indices.shape[0], indices.shape[-1] |
|
|
|
|
|
|
|
indices, ps = pack([indices], "b * q") |
|
|
|
|
|
|
|
|
|
if quantize_dim < self.num_quantizers: |
|
assert ( |
|
self.quantize_dropout > 0.0 |
|
), "quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations" |
|
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value=-1) |
|
|
|
|
|
|
|
mask = indices == -1 |
|
indices = indices.masked_fill( |
|
mask, 0 |
|
) |
|
|
|
all_codes = get_at("q [c] d, b n q -> q b n d", self.codebooks, indices) |
|
|
|
|
|
|
|
all_codes = all_codes.masked_fill(rearrange(mask, "b n q -> q b n 1"), 0.0) |
|
|
|
|
|
|
|
scales = rearrange(self.scales, "q d -> q 1 1 d") |
|
all_codes = all_codes * scales |
|
|
|
|
|
|
|
(all_codes,) = unpack(all_codes, ps, "q b * d") |
|
|
|
return all_codes |
|
|
|
def get_output_from_indices(self, indices): |
|
codes = self.get_codes_from_indices(indices) |
|
codes_summed = reduce(codes, "q ... -> ...", "sum") |
|
return self.project_out(codes_summed) |
|
|
|
def forward(self, x, return_all_codes=False, rand_quantize_dropout_fixed_seed=None): |
|
num_quant, quant_dropout_multiple_of, device = ( |
|
self.num_quantizers, |
|
self.quantize_dropout_multiple_of, |
|
x.device, |
|
) |
|
|
|
|
|
|
|
if self.is_channel_first: |
|
x = rearrange(x, "b d ... -> b ... d") |
|
x, ps = pack([x], "b * d") |
|
|
|
|
|
|
|
x = self.project_in(x) |
|
|
|
quantized_out = 0.0 |
|
residual = x |
|
|
|
all_indices = [] |
|
|
|
should_quantize_dropout = self.training and self.quantize_dropout |
|
|
|
|
|
|
|
|
|
if should_quantize_dropout: |
|
|
|
|
|
|
|
if not exists(rand_quantize_dropout_fixed_seed): |
|
rand_quantize_dropout_fixed_seed = get_maybe_sync_seed(device) |
|
|
|
rand = random.Random(rand_quantize_dropout_fixed_seed) |
|
|
|
rand_quantize_dropout_index = rand.randrange( |
|
self.quantize_dropout_cutoff_index, num_quant |
|
) |
|
|
|
if quant_dropout_multiple_of != 1: |
|
rand_quantize_dropout_index = ( |
|
round_up_multiple( |
|
rand_quantize_dropout_index + 1, quant_dropout_multiple_of |
|
) |
|
- 1 |
|
) |
|
|
|
null_indices = torch.full( |
|
x.shape[:2], -1.0, device=device, dtype=torch.long |
|
) |
|
|
|
|
|
|
|
with autocast("cuda", enabled=False): |
|
for quantizer_index, (layer, scale) in enumerate( |
|
zip(self.layers, self.scales) |
|
): |
|
|
|
if ( |
|
should_quantize_dropout |
|
and quantizer_index > rand_quantize_dropout_index |
|
): |
|
all_indices.append(null_indices) |
|
continue |
|
|
|
quantized, indices = layer(residual / scale) |
|
|
|
quantized = quantized * scale |
|
|
|
residual = residual - quantized.detach() |
|
quantized_out = quantized_out + quantized |
|
|
|
all_indices.append(indices) |
|
|
|
|
|
|
|
quantized_out = self.project_out(quantized_out) |
|
|
|
|
|
|
|
all_indices = torch.stack(all_indices, dim=-1) |
|
|
|
|
|
|
|
if self.is_channel_first: |
|
(quantized_out,) = unpack(quantized_out, ps, "b * d") |
|
(all_indices,) = unpack(all_indices, ps, "b * d") |
|
|
|
quantized_out = rearrange(quantized_out, "b ... d -> b d ...") |
|
all_indices = rearrange(all_indices, "b ... d -> b d ...") |
|
|
|
|
|
|
|
ret = (quantized_out, all_indices) |
|
|
|
if not return_all_codes: |
|
return ret |
|
|
|
|
|
|
|
all_codes = self.get_codes_from_indices(all_indices) |
|
|
|
|
|
|
|
return (*ret, all_codes) |
|
|
|
|
|
|
|
|
|
|
|
class GroupedResidualFSQ(nn.Module): |
|
def __init__(self, *, dim, groups=1, accept_image_fmap=False, **kwargs): |
|
super().__init__() |
|
self.dim = dim |
|
self.groups = groups |
|
assert (dim % groups) == 0 |
|
dim_per_group = dim // groups |
|
|
|
self.accept_image_fmap = accept_image_fmap |
|
|
|
self.rvqs = nn.ModuleList([]) |
|
|
|
for _ in range(groups): |
|
self.rvqs.append(ResidualFSQ(dim=dim_per_group, **kwargs)) |
|
|
|
self.codebook_size = self.rvqs[0].codebook_size |
|
|
|
@property |
|
def codebooks(self): |
|
return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs)) |
|
|
|
@property |
|
def split_dim(self): |
|
return 1 if self.accept_image_fmap else -1 |
|
|
|
def get_codes_from_indices(self, indices): |
|
codes = tuple( |
|
rvq.get_codes_from_indices(chunk_indices) |
|
for rvq, chunk_indices in zip(self.rvqs, indices) |
|
) |
|
return torch.stack(codes) |
|
|
|
def get_output_from_indices(self, indices): |
|
outputs = tuple( |
|
rvq.get_output_from_indices(chunk_indices) |
|
for rvq, chunk_indices in zip(self.rvqs, indices) |
|
) |
|
return torch.cat(outputs, dim=self.split_dim) |
|
|
|
def forward(self, x, return_all_codes=False): |
|
shape, split_dim, device = x.shape, self.split_dim, x.device |
|
assert shape[split_dim] == self.dim |
|
|
|
|
|
|
|
x = x.chunk(self.groups, dim=split_dim) |
|
|
|
forward_kwargs = dict( |
|
return_all_codes=return_all_codes, |
|
rand_quantize_dropout_fixed_seed=( |
|
get_maybe_sync_seed(device) if self.training else None |
|
), |
|
) |
|
|
|
|
|
|
|
out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x)) |
|
out = tuple(zip(*out)) |
|
|
|
|
|
|
|
quantized, all_indices, *maybe_all_codes = out |
|
|
|
quantized = torch.cat(quantized, dim=split_dim) |
|
all_indices = torch.stack(all_indices) |
|
|
|
ret = (quantized, all_indices, *maybe_all_codes) |
|
return ret |
|
|
|
|
|
|
|
|
|
class TAP(nn.Module): |
|
""" |
|
Temporal average pooling, only first-order mean is considered |
|
""" |
|
|
|
def __init__(self, in_dim=0, **kwargs): |
|
super(TAP, self).__init__() |
|
self.in_dim = in_dim |
|
|
|
def forward(self, x): |
|
pooling_mean = x.mean(dim=-1) |
|
|
|
pooling_mean = pooling_mean.flatten(start_dim=1) |
|
return pooling_mean |
|
|
|
def get_out_dim(self): |
|
self.out_dim = self.in_dim |
|
return self.out_dim |
|
|
|
|
|
class TSDP(nn.Module): |
|
""" |
|
Temporal standard deviation pooling, only second-order std is considered |
|
""" |
|
|
|
def __init__(self, in_dim=0, **kwargs): |
|
super(TSDP, self).__init__() |
|
self.in_dim = in_dim |
|
|
|
def forward(self, x): |
|
|
|
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7) |
|
pooling_std = pooling_std.flatten(start_dim=1) |
|
return pooling_std |
|
|
|
def get_out_dim(self): |
|
self.out_dim = self.in_dim |
|
return self.out_dim |
|
|
|
|
|
class TSTP(nn.Module): |
|
""" |
|
Temporal statistics pooling, concatenate mean and std, which is used in |
|
x-vector |
|
Comment: simple concatenation can not make full use of both statistics |
|
""" |
|
|
|
def __init__(self, in_dim=0, **kwargs): |
|
super(TSTP, self).__init__() |
|
self.in_dim = in_dim |
|
|
|
def forward(self, x): |
|
|
|
pooling_mean = x.mean(dim=-1) |
|
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7) |
|
pooling_mean = pooling_mean.flatten(start_dim=1) |
|
pooling_std = pooling_std.flatten(start_dim=1) |
|
stats = torch.cat((pooling_mean, pooling_std), 1) |
|
return stats |
|
|
|
def get_out_dim(self): |
|
self.out_dim = self.in_dim * 2 |
|
return self.out_dim |
|
|
|
|
|
class ASTP(nn.Module): |
|
""" Attentive statistics pooling: Channel- and context-dependent |
|
statistics pooling, first used in ECAPA_TDNN. |
|
""" |
|
|
|
def __init__(self, |
|
in_dim, |
|
bottleneck_dim=128, |
|
global_context_att=False, |
|
**kwargs): |
|
super(ASTP, self).__init__() |
|
self.in_dim = in_dim |
|
self.global_context_att = global_context_att |
|
|
|
|
|
|
|
if global_context_att: |
|
self.linear1 = nn.Conv1d( |
|
in_dim * 3, bottleneck_dim, |
|
kernel_size=1) |
|
else: |
|
self.linear1 = nn.Conv1d( |
|
in_dim, bottleneck_dim, |
|
kernel_size=1) |
|
self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, |
|
kernel_size=1) |
|
|
|
def forward(self, x): |
|
""" |
|
x: a 3-dimensional tensor in tdnn-based architecture (B,F,T) |
|
or a 4-dimensional tensor in resnet architecture (B,C,F,T) |
|
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension) |
|
""" |
|
if len(x.shape) == 4: |
|
x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3]) |
|
assert len(x.shape) == 3 |
|
|
|
if self.global_context_att: |
|
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) |
|
context_std = torch.sqrt( |
|
torch.var(x, dim=-1, keepdim=True) + 1e-7).expand_as(x) |
|
x_in = torch.cat((x, context_mean, context_std), dim=1) |
|
else: |
|
x_in = x |
|
|
|
|
|
alpha = torch.tanh( |
|
self.linear1(x_in)) |
|
alpha = torch.softmax(self.linear2(alpha), dim=2) |
|
mean = torch.sum(alpha * x, dim=2) |
|
var = torch.sum(alpha * (x**2), dim=2) - mean**2 |
|
std = torch.sqrt(var.clamp(min=1e-7)) |
|
return torch.cat([mean, std], dim=1) |
|
|
|
def get_out_dim(self): |
|
self.out_dim = 2 * self.in_dim |
|
return self.out_dim |
|
|
|
|
|
class MHASTP(torch.nn.Module): |
|
""" Multi head attentive statistics pooling |
|
Reference: |
|
Self Multi-Head Attention for Speaker Recognition |
|
https://arxiv.org/pdf/1906.09890.pdf |
|
""" |
|
|
|
def __init__(self, |
|
in_dim, |
|
layer_num=2, |
|
head_num=2, |
|
d_s=1, |
|
bottleneck_dim=64, |
|
**kwargs): |
|
super(MHASTP, self).__init__() |
|
assert (in_dim % head_num |
|
) == 0 |
|
self.in_dim = in_dim |
|
self.head_num = head_num |
|
d_model = int(in_dim / head_num) |
|
channel_dims = [bottleneck_dim for i in range(layer_num + 1)] |
|
if d_s > 1: |
|
d_s = d_model |
|
else: |
|
d_s = 1 |
|
self.d_s = d_s |
|
channel_dims[0], channel_dims[-1] = d_model, d_s |
|
heads_att_trans = [] |
|
for i in range(self.head_num): |
|
att_trans = nn.Sequential() |
|
for i in range(layer_num - 1): |
|
att_trans.add_module( |
|
'att_' + str(i), |
|
nn.Conv1d(channel_dims[i], channel_dims[i + 1], 1, 1)) |
|
att_trans.add_module('tanh' + str(i), nn.Tanh()) |
|
att_trans.add_module( |
|
'att_' + str(layer_num - 1), |
|
nn.Conv1d(channel_dims[layer_num - 1], channel_dims[layer_num], |
|
1, 1)) |
|
heads_att_trans.append(att_trans) |
|
self.heads_att_trans = nn.ModuleList(heads_att_trans) |
|
|
|
def forward(self, input): |
|
""" |
|
input: a 3-dimensional tensor in xvector architecture |
|
or a 4-dimensional tensor in resnet architecture |
|
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension) |
|
""" |
|
if len(input.shape) == 4: |
|
input = input.reshape(input.shape[0], |
|
input.shape[1] * input.shape[2], |
|
input.shape[3]) |
|
assert len(input.shape) == 3 |
|
bs, f_dim, t_dim = input.shape |
|
chunks = torch.chunk(input, self.head_num, 1) |
|
|
|
chunks_out = [] |
|
|
|
|
|
for i, layer in enumerate(self.heads_att_trans): |
|
att_score = layer(chunks[i]) |
|
alpha = F.softmax(att_score, dim=-1) |
|
mean = torch.sum(alpha * chunks[i], dim=2) |
|
var = torch.sum(alpha * chunks[i]**2, dim=2) - mean**2 |
|
std = torch.sqrt(var.clamp(min=1e-7)) |
|
chunks_out.append(torch.cat((mean, std), dim=1)) |
|
out = torch.cat(chunks_out, dim=1) |
|
return out |
|
|
|
def get_out_dim(self): |
|
self.out_dim = 2 * self.in_dim |
|
return self.out_dim |
|
|
|
|
|
class MQMHASTP(torch.nn.Module): |
|
""" An attentive pooling |
|
Reference: |
|
multi query multi head attentive statistics pooling |
|
https://arxiv.org/pdf/2110.05042.pdf |
|
Args: |
|
in_dim: the feature dimension of input |
|
layer_num: the number of layer in the pooling layer |
|
query_num: the number of querys |
|
head_num: the number of heads |
|
bottleneck_dim: the bottleneck dimension |
|
|
|
SA (H = 1, Q = 1, n = 2, d_s = 1) ref: |
|
https://www.danielpovey.com/files/2018_interspeech_xvector_attention.pdf |
|
MHA (H > 1, Q = 1, n = 1, d_s = 1) ref: |
|
https://arxiv.org/pdf/1906.09890.pdf |
|
AS (H = 1, Q > 1, n = 2, d_s = 1) ref: |
|
https://arxiv.org/pdf/1803.10963.pdf |
|
VSA (H = 1, Q > 1, n = 2, d_s = d_h) ref: |
|
http://www.interspeech2020.org/uploadfile/pdf/Mon-2-10-5.pdf |
|
""" |
|
|
|
def __init__(self, |
|
in_dim, |
|
layer_num=2, |
|
query_num=2, |
|
head_num=8, |
|
d_s=2, |
|
bottleneck_dim=64, |
|
**kwargs): |
|
super(MQMHASTP, self).__init__() |
|
self.n_query = nn.ModuleList([ |
|
MHASTP(in_dim, |
|
layer_num=layer_num, |
|
head_num=head_num, |
|
d_s=d_s, |
|
bottleneck_dim=bottleneck_dim) for i in range(query_num) |
|
]) |
|
self.query_num = query_num |
|
self.in_dim = in_dim |
|
|
|
def forward(self, input): |
|
""" |
|
input: a 3-dimensional tensor in xvector architecture |
|
or a 4-dimensional tensor in resnet architecture |
|
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension) |
|
""" |
|
if len(input.shape) == 4: |
|
input = input.reshape(input.shape[0], |
|
input.shape[1] * input.shape[2], |
|
input.shape[3]) |
|
assert len(input.shape) == 3 |
|
res = [] |
|
for i, layer in enumerate(self.n_query): |
|
res.append(layer(input)) |
|
out = torch.cat(res, dim=-1) |
|
return out |
|
|
|
def get_out_dim(self): |
|
self.out_dim = self.in_dim * 2 * self.query_num |
|
return self.out_dim |
|
|
|
|
|
|
|
|
|
|
|
class Res2Conv1dReluBn(nn.Module): |
|
""" |
|
in_channels == out_channels == channels |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
scale=4, |
|
): |
|
super().__init__() |
|
assert channels % scale == 0, "{} % {} != 0".format(channels, scale) |
|
self.scale = scale |
|
self.width = channels // scale |
|
self.nums = scale if scale == 1 else scale - 1 |
|
|
|
self.convs = [] |
|
self.bns = [] |
|
for i in range(self.nums): |
|
self.convs.append( |
|
nn.Conv1d( |
|
self.width, |
|
self.width, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
bias=bias, |
|
) |
|
) |
|
self.bns.append(nn.BatchNorm1d(self.width)) |
|
self.convs = nn.ModuleList(self.convs) |
|
self.bns = nn.ModuleList(self.bns) |
|
|
|
def forward(self, x): |
|
out = [] |
|
spx = torch.split(x, self.width, 1) |
|
sp = spx[0] |
|
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): |
|
|
|
if i >= 1: |
|
sp = sp + spx[i] |
|
sp = conv(sp) |
|
sp = bn(F.relu(sp)) |
|
out.append(sp) |
|
if self.scale != 1: |
|
out.append(spx[self.nums]) |
|
out = torch.cat(out, dim=1) |
|
|
|
return out |
|
|
|
|
|
""" Conv1d + BatchNorm1d + ReLU |
|
""" |
|
|
|
|
|
class Conv1dReluBn(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.conv = nn.Conv1d( |
|
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias |
|
) |
|
self.bn = nn.BatchNorm1d(out_channels) |
|
|
|
def forward(self, x): |
|
return self.bn(F.relu(self.conv(x))) |
|
|
|
|
|
""" The SE connection of 1D case. |
|
""" |
|
|
|
|
|
class SE_Connect(nn.Module): |
|
|
|
def __init__(self, channels, se_bottleneck_dim=128): |
|
super().__init__() |
|
self.linear1 = nn.Linear(channels, se_bottleneck_dim) |
|
self.linear2 = nn.Linear(se_bottleneck_dim, channels) |
|
|
|
def forward(self, x): |
|
out = x.mean(dim=2) |
|
out = F.relu(self.linear1(out)) |
|
out = torch.sigmoid(self.linear2(out)) |
|
out = x * out.unsqueeze(2) |
|
|
|
return out |
|
|
|
|
|
""" SE-Res2Block of the ECAPA-TDNN architecture. |
|
""" |
|
|
|
|
|
class SE_Res2Block(nn.Module): |
|
|
|
def __init__(self, channels, kernel_size, stride, padding, dilation, scale): |
|
super().__init__() |
|
self.se_res2block = nn.Sequential( |
|
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), |
|
Res2Conv1dReluBn( |
|
channels, kernel_size, stride, padding, dilation, scale=scale |
|
), |
|
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), |
|
SE_Connect(channels), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.se_res2block(x) |
|
|
|
|
|
class ECAPA_TDNN(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
channels=512, |
|
feat_dim=80, |
|
embed_dim=192, |
|
pooling_func="ASTP", |
|
global_context_att=False, |
|
emb_bn=False, |
|
): |
|
super().__init__() |
|
|
|
self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2) |
|
self.layer2 = SE_Res2Block( |
|
channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8 |
|
) |
|
self.layer3 = SE_Res2Block( |
|
channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8 |
|
) |
|
self.layer4 = SE_Res2Block( |
|
channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8 |
|
) |
|
|
|
cat_channels = channels * 3 |
|
out_channels = 512 * 3 |
|
self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1) |
|
self.pool = globals()[pooling_func]( |
|
in_dim=out_channels, global_context_att=global_context_att |
|
) |
|
self.pool_out_dim = self.pool.get_out_dim() |
|
self.bn = nn.BatchNorm1d(self.pool_out_dim) |
|
self.linear = nn.Linear(self.pool_out_dim, embed_dim) |
|
self.emb_bn = emb_bn |
|
if emb_bn: |
|
self.bn2 = nn.BatchNorm1d(embed_dim) |
|
else: |
|
self.bn2 = nn.Identity() |
|
|
|
def forward(self, x, return_latent=False): |
|
x = x.permute(0, 2, 1) |
|
|
|
out1 = self.layer1(x) |
|
out2 = self.layer2(out1) |
|
out3 = self.layer3(out2) |
|
out4 = self.layer4(out3) |
|
|
|
out = torch.cat([out2, out3, out4], dim=1) |
|
latent = F.relu(self.conv(out)) |
|
out = self.bn(self.pool(latent)) |
|
out = self.linear(out) |
|
if self.emb_bn: |
|
out = self.bn2(out) |
|
|
|
if return_latent: |
|
return out, latent |
|
return out |
|
|
|
|
|
def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=1024, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=1024, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
global_context_att=True, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=512, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=512, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
global_context_att=True, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
|
|
|
|
def once(fn): |
|
called = False |
|
|
|
@wraps(fn) |
|
def inner(x): |
|
nonlocal called |
|
if called: |
|
return |
|
called = True |
|
return fn(x) |
|
|
|
return inner |
|
|
|
|
|
print_once = once(print) |
|
|
|
|
|
|
|
|
|
class Attend(nn.Module): |
|
def __init__(self, dropout=0.0, causal=False, use_flash=False): |
|
super().__init__() |
|
self.dropout = dropout |
|
self.attn_dropout = nn.Dropout(dropout) |
|
|
|
self.causal = causal |
|
self.register_buffer("mask", None, persistent=False) |
|
|
|
self.use_flash = use_flash |
|
assert not ( |
|
use_flash and version.parse(torch.__version__) < version.parse("2.0.0") |
|
), "in order to use flash attention, you must be using pytorch 2.0 or above" |
|
|
|
|
|
self.config = namedtuple( |
|
"EfficientAttentionConfig", |
|
["enable_flash", "enable_math", "enable_mem_efficient"], |
|
) |
|
self.cpu_config = self.config(True, True, True) |
|
self.cuda_config = None |
|
|
|
if not torch.cuda.is_available() or not use_flash: |
|
return |
|
|
|
device_properties = torch.cuda.get_device_properties(torch.device("cuda")) |
|
|
|
if device_properties.major == 8 and device_properties.minor == 0: |
|
print_once( |
|
"A100 GPU detected, using flash attention if input tensor is on cuda" |
|
) |
|
self.cuda_config = self.config(True, False, False) |
|
else: |
|
print_once( |
|
"Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda" |
|
) |
|
self.cuda_config = self.config(False, True, True) |
|
|
|
def get_mask(self, n, device): |
|
if exists(self.mask) and self.mask.shape[-1] >= n: |
|
return self.mask[:n, :n] |
|
|
|
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1) |
|
self.register_buffer("mask", mask, persistent=False) |
|
return mask |
|
|
|
def flash_attn(self, q, k, v, mask=None): |
|
_, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda |
|
|
|
|
|
|
|
|
|
if k.ndim == 3: |
|
k = rearrange(k, "b ... -> b 1 ...").expand_as(q) |
|
|
|
if v.ndim == 3: |
|
v = rearrange(v, "b ... -> b 1 ...").expand_as(q) |
|
|
|
|
|
|
|
|
|
if exists(mask): |
|
mask = rearrange(mask, "b j -> b 1 1 j") |
|
mask = mask.expand(-1, heads, q_len, -1) |
|
|
|
|
|
|
|
config = self.cuda_config if is_cuda else self.cpu_config |
|
|
|
|
|
|
|
with torch.backends.cuda.sdp_kernel(**config._asdict()): |
|
out = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=mask, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
is_causal=self.causal, |
|
) |
|
|
|
return out |
|
|
|
def forward(self, q, k, v, mask=None): |
|
""" |
|
einstein notation |
|
b - batch |
|
h - heads |
|
n, i, j - sequence length (base sequence length, source, target) |
|
d - feature dimension |
|
""" |
|
|
|
n, device = q.shape[-2], q.device |
|
|
|
scale = q.shape[-1] ** -0.5 |
|
|
|
if self.use_flash: |
|
return self.flash_attn(q, k, v, mask=mask) |
|
|
|
kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d" |
|
|
|
|
|
|
|
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale |
|
|
|
|
|
|
|
if exists(mask): |
|
mask = rearrange(mask, "b j -> b 1 1 j") |
|
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) |
|
|
|
|
|
|
|
if self.causal: |
|
causal_mask = self.get_mask(n, device) |
|
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) |
|
|
|
|
|
|
|
attn = sim.softmax(dim=-1) |
|
attn = self.attn_dropout(attn) |
|
|
|
|
|
|
|
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v) |
|
|
|
return out |
|
|
|
|
|
def Sequential(*mods): |
|
return nn.Sequential(*filter(exists, mods)) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim, scale=True, dim_cond=None): |
|
super().__init__() |
|
self.cond = exists(dim_cond) |
|
self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None |
|
|
|
self.scale = dim**0.5 |
|
self.gamma = nn.Parameter(torch.ones(dim)) if scale else None |
|
|
|
def forward(self, x, cond=None): |
|
gamma = default(self.gamma, 1) |
|
out = F.normalize(x, dim=-1) * self.scale * gamma |
|
|
|
if not self.cond: |
|
return out |
|
|
|
assert exists(cond) |
|
gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1) |
|
gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta)) |
|
return out * gamma + beta |
|
|
|
|
|
class CausalConv1d(nn.Conv1d): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
(kernel_size,) = self.kernel_size |
|
(dilation,) = self.dilation |
|
(stride,) = self.stride |
|
|
|
assert stride == 1 |
|
self.causal_padding = dilation * (kernel_size - 1) |
|
|
|
def forward(self, x): |
|
causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0) |
|
return super().forward(causal_padded_x) |
|
|
|
|
|
class GEGLU(nn.Module): |
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.gelu(gate) * x |
|
|
|
|
|
def FeedForward(dim, mult=4, causal_conv=False): |
|
dim_inner = int(dim * mult * 2 / 3) |
|
|
|
conv = None |
|
if causal_conv: |
|
conv = nn.Sequential( |
|
Rearrange("b n d -> b d n"), |
|
CausalConv1d(dim_inner, dim_inner, 3), |
|
Rearrange("b d n -> b n d"), |
|
) |
|
|
|
return Sequential( |
|
nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim) |
|
) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
*, |
|
dim_context=None, |
|
causal=False, |
|
dim_head=64, |
|
heads=8, |
|
dropout=0.0, |
|
use_flash=False, |
|
cross_attn_include_queries=False, |
|
): |
|
super().__init__() |
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
self.cross_attn_include_queries = cross_attn_include_queries |
|
|
|
dim_inner = dim_head * heads |
|
dim_context = default(dim_context, dim) |
|
|
|
self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash) |
|
self.to_q = nn.Linear(dim, dim_inner, bias=False) |
|
self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False) |
|
self.to_out = nn.Linear(dim_inner, dim, bias=False) |
|
|
|
def forward(self, x, context=None, mask=None): |
|
h, has_context = self.heads, exists(context) |
|
|
|
context = default(context, x) |
|
|
|
if has_context and self.cross_attn_include_queries: |
|
context = torch.cat((x, context), dim=-2) |
|
|
|
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1)) |
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) |
|
|
|
out = self.attend(q, k, v, mask=mask) |
|
|
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
return self.to_out(out) |
|
|
|
|
|
class PerceiverResampler(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
depth=2, |
|
dim_context=None, |
|
num_latents=32, |
|
dim_head=64, |
|
heads=8, |
|
ff_mult=4, |
|
use_flash_attn=False, |
|
): |
|
super().__init__() |
|
dim_context = default(dim_context, dim) |
|
|
|
self.proj_context = ( |
|
nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity() |
|
) |
|
|
|
self.latents = nn.Parameter(torch.randn(num_latents, dim)) |
|
nn.init.normal_(self.latents, std=0.02) |
|
|
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
Attention( |
|
dim=dim, |
|
dim_head=dim_head, |
|
heads=heads, |
|
use_flash=use_flash_attn, |
|
cross_attn_include_queries=True, |
|
), |
|
FeedForward(dim=dim, mult=ff_mult), |
|
] |
|
) |
|
) |
|
|
|
self.norm = RMSNorm(dim) |
|
|
|
def forward(self, x, mask=None): |
|
batch = x.shape[0] |
|
|
|
x = self.proj_context(x) |
|
|
|
latents = repeat(self.latents, "n d -> b n d", b=batch) |
|
|
|
for attn, ff in self.layers: |
|
latents = attn(latents, x, mask=mask) + latents |
|
latents = ff(latents) + latents |
|
|
|
return self.norm(latents) |
|
|
|
|
|
|
|
|
|
class SpeakerEncoder(nn.Module): |
|
""" |
|
|
|
Args: |
|
input_dim (int): acoustic feature dimension |
|
out_dim (int): output dimension of x-vector and d-vector |
|
latent_dim (int): latent dimension before quantization |
|
token_num (int): sequence length of speaker tokens |
|
fsq_levels (List[int]): number of levels for each quantizer |
|
fsq_num_quantizers (int): number of quantizers |
|
|
|
Return: |
|
speaker_embs: (B, T2, out_dim) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_dim: int = 100, |
|
out_dim: int = 512, |
|
latent_dim: int = 128, |
|
token_num: int = 32, |
|
fsq_levels: List[int] = [4, 4, 4, 4, 4, 4], |
|
fsq_num_quantizers: int = 1, |
|
): |
|
super(SpeakerEncoder, self).__init__() |
|
|
|
self.speaker_encoder = ECAPA_TDNN_GLOB_c512( |
|
feat_dim=input_dim, embed_dim=out_dim |
|
) |
|
self.perceiver_sampler = PerceiverResampler( |
|
dim=latent_dim, dim_context=512 * 3, num_latents=token_num |
|
) |
|
self.quantizer = ResidualFSQ( |
|
levels=fsq_levels, |
|
num_quantizers=fsq_num_quantizers, |
|
dim=latent_dim, |
|
is_channel_first=True, |
|
quantize_dropout=False, |
|
) |
|
|
|
self.project = nn.Linear(latent_dim * token_num, out_dim) |
|
|
|
def get_codes_from_indices(self, indices: torch.Tensor) -> torch.Tensor: |
|
zq = self.quantizer.get_codes_from_indices(indices.transpose(1, 2)) |
|
return zq.transpose(1, 2) |
|
|
|
def get_indices(self, mels: torch.Tensor) -> torch.Tensor: |
|
mels = mels.transpose(1, 2) |
|
x = self.perceiver_sampler(mels).transpose(1, 2) |
|
zq, indices = self.quantizer(x) |
|
return indices |
|
|
|
def forward(self, mels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Args: |
|
mels: (B, D_mel, T1) |
|
|
|
Return: |
|
x_vector: (B, out_dim) |
|
d_vector: (B, out_dim) |
|
""" |
|
|
|
|
|
x_vector, features = self.speaker_encoder(mels, True) |
|
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2) |
|
zq, indices = self.quantizer(x) |
|
x = zq.reshape(zq.shape[0], -1) |
|
d_vector = self.project(x) |
|
|
|
return x_vector, d_vector |
|
|
|
def tokenize(self, mels: torch.Tensor) -> torch.Tensor: |
|
"""tokenize the input mel spectrogram""" |
|
_, features = self.speaker_encoder(mels, True) |
|
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2) |
|
zq, indices = self.quantizer(x) |
|
return indices |
|
|
|
def detokenize(self, indices: torch.Tensor) -> torch.Tensor: |
|
"""detokenize the input indices to d-vector""" |
|
zq = self.quantizer.get_output_from_indices(indices.transpose(1, 2)).transpose(1, 2) |
|
x = zq.reshape(zq.shape[0], -1) |
|
d_vector = self.project(x) |
|
return d_vector |
|
|
|
|
|
|
|
|
|
class Encoder(nn.Module): |
|
"""Encoder module with convnext and downsampling blocks""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
vocos_dim: int, |
|
vocos_intermediate_dim: int, |
|
vocos_num_layers: int, |
|
out_channels: int, |
|
sample_ratios: List[int] = [1, 1], |
|
): |
|
super().__init__() |
|
""" |
|
Encoder module with VocosBackbone and sampling blocks. |
|
|
|
Args: |
|
sample_ratios (List[int]): sample ratios |
|
example: [2, 2] means downsample by 2x and then upsample by 2x |
|
""" |
|
self.encoder = VocosBackbone( |
|
input_channels=input_channels, |
|
dim=vocos_dim, |
|
intermediate_dim=vocos_intermediate_dim, |
|
num_layers=vocos_num_layers, |
|
condition_dim=None, |
|
) |
|
|
|
modules = [ |
|
nn.Sequential( |
|
SamplingBlock( |
|
dim=vocos_dim, |
|
groups=vocos_dim, |
|
downsample_scale=ratio, |
|
), |
|
VocosBackbone( |
|
input_channels=vocos_dim, |
|
dim=vocos_dim, |
|
intermediate_dim=vocos_intermediate_dim, |
|
num_layers=2, |
|
condition_dim=None, |
|
), |
|
) |
|
for ratio in sample_ratios |
|
] |
|
|
|
self.downsample = nn.Sequential(*modules) |
|
|
|
self.project = nn.Linear(vocos_dim, out_channels) |
|
|
|
def forward(self, x: torch.Tensor, *args): |
|
""" |
|
Args: |
|
x (torch.Tensor): (batch_size, input_channels, length) |
|
|
|
Returns: |
|
x (torch.Tensor): (batch_size, encode_channels, length) |
|
""" |
|
x = self.encoder(x) |
|
x = self.downsample(x) |
|
x = self.project(x) |
|
return x.transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
class Decoder(nn.Module): |
|
"""Decoder module with convnext and upsampling blocks |
|
|
|
Args: |
|
sample_ratios (List[int]): sample ratios |
|
example: [2, 2] means downsample by 2x and then upsample by 2x |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
vocos_dim: int, |
|
vocos_intermediate_dim: int, |
|
vocos_num_layers: int, |
|
out_channels: int, |
|
condition_dim: int = None, |
|
sample_ratios: List[int] = [1, 1], |
|
use_tanh_at_final: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.linear_pre = nn.Linear(input_channels, vocos_dim) |
|
modules = [ |
|
nn.Sequential( |
|
SamplingBlock( |
|
dim=vocos_dim, |
|
groups=vocos_dim, |
|
upsample_scale=ratio, |
|
), |
|
VocosBackbone( |
|
input_channels=vocos_dim, |
|
dim=vocos_dim, |
|
intermediate_dim=vocos_intermediate_dim, |
|
num_layers=2, |
|
condition_dim=None, |
|
), |
|
) |
|
for ratio in sample_ratios |
|
] |
|
|
|
self.downsample = nn.Sequential(*modules) |
|
|
|
self.vocos_backbone = VocosBackbone( |
|
input_channels=vocos_dim, |
|
dim=vocos_dim, |
|
intermediate_dim=vocos_intermediate_dim, |
|
num_layers=vocos_num_layers, |
|
condition_dim=condition_dim, |
|
) |
|
self.linear = nn.Linear(vocos_dim, out_channels) |
|
self.use_tanh_at_final = use_tanh_at_final |
|
|
|
def forward(self, x: torch.Tensor, c: torch.Tensor = None): |
|
"""encoder forward. |
|
|
|
Args: |
|
x (torch.Tensor): (batch_size, input_channels, length) |
|
|
|
Returns: |
|
x (torch.Tensor): (batch_size, encode_channels, length) |
|
""" |
|
x = self.linear_pre(x.transpose(1, 2)) |
|
x = self.downsample(x).transpose(1, 2) |
|
x = self.vocos_backbone(x, condition=c) |
|
x = self.linear(x).transpose(1, 2) |
|
if self.use_tanh_at_final: |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__( |
|
self, |
|
input_dim: int = 16, |
|
output_dim: int = 8, |
|
kernel_size: int = 2, |
|
stride: int = 1, |
|
): |
|
super().__init__() |
|
self.block = nn.Sequential( |
|
Snake1d(input_dim), |
|
WNConvTranspose1d( |
|
input_dim, |
|
output_dim, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - stride) // 2, |
|
), |
|
ResidualUnit(output_dim, dilation=1), |
|
ResidualUnit(output_dim, dilation=3), |
|
ResidualUnit(output_dim, dilation=9), |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
class WaveGenerator(nn.Module): |
|
def __init__( |
|
self, |
|
input_channel, |
|
channels, |
|
rates, |
|
kernel_sizes, |
|
d_out: int = 1, |
|
): |
|
super().__init__() |
|
|
|
|
|
layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)] |
|
|
|
|
|
for i, (kernel_size, stride) in enumerate(zip(kernel_sizes, rates)): |
|
input_dim = channels // 2**i |
|
output_dim = channels // 2 ** (i + 1) |
|
layers += [DecoderBlock(input_dim, output_dim, kernel_size, stride)] |
|
|
|
|
|
layers += [ |
|
Snake1d(output_dim), |
|
WNConv1d(output_dim, d_out, kernel_size=7, padding=3), |
|
nn.Tanh(), |
|
] |
|
|
|
self.model = nn.Sequential(*layers) |
|
|
|
self.apply(init_weights) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
|
|
|
|
def ema_inplace(moving_avg, new, decay): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
|
|
|
|
class FactorizedVectorQuantize(nn.Module): |
|
def __init__( |
|
self, |
|
input_dim: int, |
|
codebook_size: int, |
|
codebook_dim: int, |
|
commitment: float, |
|
codebook_loss_weight: float = 1.0, |
|
decay: float = 0.99, |
|
threshold_ema_dead_code: float = 2, |
|
momentum: float = 0.99, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.input_dim = input_dim |
|
self.codebook_size = codebook_size |
|
self.codebook_dim = codebook_dim |
|
self.commitment = commitment |
|
self.codebook_loss_weight = codebook_loss_weight |
|
self.decay = decay |
|
self.threshold_ema_dead_code = threshold_ema_dead_code |
|
self.momentum = momentum |
|
|
|
if input_dim != self.codebook_dim: |
|
self.in_project = WNConv1d(input_dim, self.codebook_dim, kernel_size=1) |
|
self.out_project = WNConv1d(self.codebook_dim, input_dim, kernel_size=1) |
|
|
|
else: |
|
self.in_project = nn.Identity() |
|
self.out_project = nn.Identity() |
|
|
|
self.codebook = nn.Embedding(self.codebook_size, self.codebook_dim) |
|
self.register_buffer("cluster_size", torch.zeros(self.codebook_size)) |
|
|
|
def forward(self, z: torch.Tensor) -> Dict[str, Any]: |
|
"""Quantized the input tensor using a fixed codebook and returns |
|
the corresponding codebook vectors |
|
|
|
Parameters |
|
---------- |
|
z : Tensor[B x D x T] |
|
|
|
Returns |
|
------- |
|
Tensor[B x D x T] |
|
Quantized continuous representation of input |
|
Tensor[1] |
|
Commitment loss to train encoder to predict vectors closer to codebook |
|
entries |
|
Tensor[1] |
|
Codebook loss to update the codebook |
|
Tensor[B x T] |
|
Codebook indices (quantized discrete representation of input) |
|
Tensor[B x D x T] |
|
Projected latents (continuous representation of input before quantization) |
|
""" |
|
|
|
|
|
|
|
z_e = self.in_project(z) |
|
z_q, indices, dists = self.decode_latents(z_e) |
|
|
|
|
|
embed_onehot = F.one_hot(indices, self.codebook_size).type(z_e.dtype) |
|
avg_probs = torch.mean(embed_onehot.reshape(-1, self.codebook_size), dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
active_num = (embed_onehot.sum(0).sum(0) > 0).sum() |
|
if self.training: |
|
|
|
|
|
ema_inplace(self.cluster_size, embed_onehot.sum(0).sum(0), self.decay) |
|
active_num = sum(self.cluster_size > self.threshold_ema_dead_code) |
|
|
|
if self.training: |
|
commit_loss = ( |
|
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) |
|
* self.commitment |
|
) |
|
|
|
codebook_loss = ( |
|
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2]) |
|
* self.codebook_loss_weight |
|
) |
|
|
|
else: |
|
commit_loss = torch.zeros(0, device=z.device) |
|
codebook_loss = torch.zeros(0, device=z.device) |
|
|
|
z_q = ( |
|
z_e + (z_q - z_e).detach() |
|
) |
|
|
|
z_q = self.out_project(z_q) |
|
|
|
vq_loss = (commit_loss + codebook_loss).mean() |
|
|
|
return { |
|
"z_q": z_q, |
|
"indices": indices, |
|
"dists": dists, |
|
"vq_loss": vq_loss, |
|
"perplexity": perplexity, |
|
"active_num": active_num.float(), |
|
} |
|
|
|
def vq2emb(self, vq, out_proj=True): |
|
emb = self.embed_code(vq) |
|
if out_proj: |
|
emb = self.out_project(emb) |
|
return emb |
|
|
|
def tokenize(self, z: torch.Tensor) -> torch.Tensor: |
|
"""tokenize the input tensor""" |
|
z_e = self.in_project(z) |
|
_, indices, _ = self.decode_latents(z_e) |
|
return indices |
|
|
|
def detokenize(self, indices): |
|
"""detokenize the input indices""" |
|
z_q = self.decode_code(indices) |
|
z_q = self.out_project(z_q) |
|
return z_q |
|
|
|
def get_emb(self): |
|
return self.codebook.weight |
|
|
|
def embed_code(self, embed_id): |
|
return F.embedding(embed_id, self.codebook.weight) |
|
|
|
def decode_code(self, embed_id): |
|
return self.embed_code(embed_id).transpose(1, 2) |
|
|
|
def decode_latents(self, latents): |
|
encodings = rearrange(latents, "b d t -> (b t) d") |
|
codebook = self.codebook.weight |
|
|
|
|
|
encodings = F.normalize(encodings) |
|
codebook = F.normalize(codebook) |
|
|
|
|
|
|
|
dist = ( |
|
encodings.pow(2).sum(1, keepdim=True) |
|
- 2 * encodings @ codebook.t() |
|
+ codebook.pow(2).sum(1, keepdim=True).t() |
|
) |
|
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0)) |
|
z_q = self.decode_code(indices) |
|
|
|
return z_q, indices, dist |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BiCodec(nn.Module): |
|
def __init__( |
|
self, |
|
mel_params: Dict[str, Any], |
|
encoder: nn.Module, |
|
decoder: nn.Module, |
|
quantizer: nn.Module, |
|
speaker_encoder: nn.Module, |
|
prenet: nn.Module, |
|
postnet: nn.Module, |
|
**kwargs |
|
) -> None: |
|
super().__init__() |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
self.quantizer = quantizer |
|
self.speaker_encoder = speaker_encoder |
|
self.prenet = prenet |
|
self.postnet = postnet |
|
self.init_mel_transformer(mel_params) |
|
|
|
@classmethod |
|
def load_from_config_and_checkpoint(cls, model_dir: Path, bicodec_config_object: SparkTTSBiCodecConfig) -> "BiCodec": |
|
""" |
|
Loads the BiCodec model using a SparkTTSBiCodecConfig object and a checkpoint file. |
|
Args: |
|
model_dir (Path): Path to the directory containing the model checkpoint ('model.safetensors'). |
|
bicodec_config_object (SparkTTSBiCodecConfig): The nested config object from SparkTTSConfig. |
|
Returns: |
|
BiCodec: The initialized BiCodec model. |
|
""" |
|
ckpt_path = model_dir / 'model.safetensors' |
|
if not ckpt_path.exists(): |
|
ckpt_path_bin = model_dir / 'pytorch_model.bin' |
|
if ckpt_path_bin.exists(): |
|
ckpt_path = ckpt_path_bin |
|
else: |
|
raise FileNotFoundError(f"BiCodec checkpoint not found at {model_dir / 'model.safetensors'} or potential fallbacks.") |
|
|
|
|
|
mel_params_config = bicodec_config_object.mel_params |
|
encoder_cfg = bicodec_config_object.encoder_config |
|
decoder_cfg = bicodec_config_object.decoder_config |
|
quantizer_cfg = bicodec_config_object.quantizer_config |
|
speaker_encoder_cfg = bicodec_config_object.speaker_encoder_config |
|
prenet_cfg = bicodec_config_object.prenet_config |
|
postnet_cfg = bicodec_config_object.postnet_config |
|
|
|
|
|
mel_params = mel_params_config.to_dict() |
|
|
|
encoder = Encoder( |
|
input_channels=encoder_cfg.input_channels, |
|
vocos_dim=encoder_cfg.vocos_dim, |
|
vocos_intermediate_dim=encoder_cfg.vocos_intermediate_dim, |
|
vocos_num_layers=encoder_cfg.vocos_num_layers, |
|
out_channels=encoder_cfg.out_channels, |
|
sample_ratios=encoder_cfg.sample_ratios, |
|
) |
|
quantizer = FactorizedVectorQuantize( |
|
input_dim=quantizer_cfg.input_dim, |
|
codebook_size=quantizer_cfg.codebook_size, |
|
codebook_dim=quantizer_cfg.codebook_dim, |
|
commitment=quantizer_cfg.commitment, |
|
codebook_loss_weight=quantizer_cfg.codebook_loss_weight, |
|
decay=quantizer_cfg.decay, |
|
threshold_ema_dead_code=quantizer_cfg.threshold_ema_dead_code, |
|
|
|
) |
|
prenet = Decoder( |
|
input_channels=prenet_cfg.input_channels, |
|
vocos_dim=prenet_cfg.vocos_dim, |
|
vocos_intermediate_dim=prenet_cfg.vocos_intermediate_dim, |
|
vocos_num_layers=prenet_cfg.vocos_num_layers, |
|
out_channels=prenet_cfg.out_channels, |
|
condition_dim=prenet_cfg.condition_dim, |
|
sample_ratios=prenet_cfg.sample_ratios, |
|
use_tanh_at_final=prenet_cfg.use_tanh_at_final, |
|
) |
|
postnet = Decoder( |
|
input_channels=postnet_cfg.input_channels, |
|
vocos_dim=postnet_cfg.vocos_dim, |
|
vocos_intermediate_dim=postnet_cfg.vocos_intermediate_dim, |
|
vocos_num_layers=postnet_cfg.vocos_num_layers, |
|
out_channels=postnet_cfg.out_channels, |
|
|
|
|
|
use_tanh_at_final=postnet_cfg.use_tanh_at_final, |
|
) |
|
decoder = WaveGenerator( |
|
input_channel=decoder_cfg.input_channel, |
|
channels=decoder_cfg.channels, |
|
rates=decoder_cfg.rates, |
|
kernel_sizes=decoder_cfg.kernel_sizes, |
|
|
|
) |
|
speaker_encoder = SpeakerEncoder( |
|
input_dim=speaker_encoder_cfg.input_dim, |
|
out_dim=speaker_encoder_cfg.out_dim, |
|
latent_dim=speaker_encoder_cfg.latent_dim, |
|
token_num=speaker_encoder_cfg.token_num, |
|
fsq_levels=speaker_encoder_cfg.fsq_levels, |
|
fsq_num_quantizers=speaker_encoder_cfg.fsq_num_quantizers, |
|
) |
|
|
|
|
|
model = cls( |
|
mel_params=mel_params, |
|
encoder=encoder, |
|
decoder=decoder, |
|
quantizer=quantizer, |
|
speaker_encoder=speaker_encoder, |
|
prenet=prenet, |
|
postnet=postnet, |
|
) |
|
|
|
|
|
logger.info(f"Loading BiCodec state dict from: {ckpt_path}") |
|
if str(ckpt_path).endswith(".safetensors"): |
|
state_dict = load_file(ckpt_path, device="cpu") |
|
else: |
|
state_dict = torch.load(ckpt_path, map_location="cpu") |
|
|
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
if missing_keys: |
|
logger.warning(f"BiCodec Missing keys: {missing_keys}") |
|
if unexpected_keys: |
|
logger.warning(f"BiCodec Unexpected keys: {unexpected_keys}") |
|
|
|
model.eval() |
|
model.remove_weight_norm() |
|
|
|
logger.info("BiCodec loaded successfully.") |
|
return model |
|
|
|
|
|
|
|
|
|
def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Performs a forward pass through the model. |
|
|
|
Args: |
|
batch (dict): A dictionary containing features, reference waveform, and target waveform. |
|
|
|
Returns: |
|
dict: A dictionary containing the reconstruction, features, and other metrics. |
|
""" |
|
feat = batch["feat"] |
|
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1) |
|
|
|
z = self.encoder(feat.transpose(1, 2)) |
|
vq_outputs = self.quantizer(z) |
|
|
|
x_vector, d_vector = self.speaker_encoder(mel.transpose(1, 2)) |
|
|
|
conditions = d_vector |
|
with_speaker_loss = False |
|
|
|
x = self.prenet(vq_outputs["z_q"], conditions) |
|
pred_feat = self.postnet(x) |
|
x = x + conditions.unsqueeze(-1) |
|
wav_recon = self.decoder(x) |
|
|
|
return { |
|
"vq_loss": vq_outputs["vq_loss"], |
|
"perplexity": vq_outputs["perplexity"], |
|
"cluster_size": vq_outputs["active_num"], |
|
"recons": wav_recon, |
|
"pred_feat": pred_feat, |
|
"x_vector": x_vector, |
|
"d_vector": d_vector, |
|
"audios": batch["wav"].unsqueeze(1), |
|
"with_speaker_loss": with_speaker_loss, |
|
} |
|
|
|
|
|
@torch.no_grad() |
|
def tokenize(self, batch: Dict[str, Any]): |
|
""" |
|
Tokenizes the input audio into semantic and global tokens. |
|
|
|
Args: |
|
batch (dict): The input audio features and reference waveform. |
|
|
|
Returns: |
|
tuple: Semantic tokens and global tokens. |
|
""" |
|
feat = batch["feat"] |
|
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1) |
|
z = self.encoder(feat.transpose(1, 2)) |
|
semantic_tokens = self.quantizer.tokenize(z) |
|
global_tokens = self.speaker_encoder.tokenize(mel.transpose(1, 2)) |
|
|
|
return semantic_tokens, global_tokens |
|
|
|
@torch.no_grad() |
|
def detokenize(self, semantic_tokens, global_tokens): |
|
""" |
|
Detokenizes the semantic and global tokens into a waveform. |
|
|
|
Args: |
|
semantic_tokens (tensor): Semantic tokens. |
|
global_tokens (tensor): Global tokens. |
|
|
|
Returns: |
|
tensor: Reconstructed waveform. |
|
""" |
|
z_q = self.quantizer.detokenize(semantic_tokens) |
|
d_vector = self.speaker_encoder.detokenize(global_tokens) |
|
x = self.prenet(z_q, d_vector) |
|
x = x + d_vector.unsqueeze(-1) |
|
wav_recon = self.decoder(x) |
|
|
|
return wav_recon |
|
|
|
def init_mel_transformer(self, config: Dict[str, Any]): |
|
""" |
|
Initializes the MelSpectrogram transformer based on the provided configuration. |
|
|
|
Args: |
|
config (dict): Configuration parameters for MelSpectrogram. |
|
""" |
|
import torchaudio.transforms as TT |
|
|
|
self.mel_transformer = TT.MelSpectrogram( |
|
config["sample_rate"], |
|
config["n_fft"], |
|
config["win_length"], |
|
config["hop_length"], |
|
config["mel_fmin"], |
|
config["mel_fmax"], |
|
n_mels=config["num_mels"], |
|
power=1, |
|
norm="slaney", |
|
mel_scale="slaney", |
|
) |
|
|
|
def remove_weight_norm(self): |
|
"""Removes weight normalization from all layers.""" |
|
def _remove_weight_norm(m): |
|
try: |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
pass |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def audio_volume_normalize(audio: np.ndarray, coeff: float = 0.2) -> np.ndarray: |
|
""" |
|
Normalize the volume of an audio signal. |
|
|
|
Parameters: |
|
audio (numpy array): Input audio signal array. |
|
coeff (float): Target coefficient for normalization, default is 0.2. |
|
|
|
Returns: |
|
numpy array: The volume-normalized audio signal. |
|
""" |
|
|
|
temp = np.sort(np.abs(audio)) |
|
|
|
|
|
if temp[-1] < 0.1: |
|
scaling_factor = max( |
|
temp[-1], 1e-3 |
|
) |
|
audio = audio / scaling_factor * 0.1 |
|
|
|
|
|
temp = temp[temp > 0.01] |
|
L = temp.shape[0] |
|
|
|
|
|
if L <= 10: |
|
return audio |
|
|
|
|
|
volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)]) |
|
|
|
|
|
audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10) |
|
|
|
|
|
max_value = np.max(np.abs(audio)) |
|
if max_value > 1: |
|
audio = audio / max_value |
|
|
|
return audio |
|
|
|
|
|
def load_audio( |
|
adfile: Path, |
|
sampling_rate: int = None, |
|
length: int = None, |
|
volume_normalize: bool = False, |
|
segment_duration: int = None, |
|
) -> np.ndarray: |
|
r"""Load audio file with target sampling rate and lsength |
|
|
|
Args: |
|
adfile (Path): path to audio file. |
|
sampling_rate (int, optional): target sampling rate. Defaults to None. |
|
length (int, optional): target audio length. Defaults to None. |
|
volume_normalize (bool, optional): whether perform volume normalization. Defaults to False. |
|
segment_duration (int): random select a segment with duration of {segment_duration}s. |
|
Defualt to None which means the whole audio will be used. |
|
|
|
Returns: |
|
audio (np.ndarray): audio |
|
""" |
|
|
|
audio, sr = soundfile.read(adfile) |
|
if len(audio.shape) > 1: |
|
audio = audio[:, 0] |
|
|
|
if sampling_rate is not None and sr != sampling_rate: |
|
audio = soxr.resample(audio, sr, sampling_rate, quality="VHQ") |
|
sr = sampling_rate |
|
|
|
if segment_duration is not None: |
|
seg_length = int(sr * segment_duration) |
|
audio = random_select_audio_segment(audio, seg_length) |
|
|
|
|
|
if volume_normalize: |
|
audio = audio_volume_normalize(audio) |
|
|
|
if length is not None: |
|
assert abs(audio.shape[0] - length) < 1000 |
|
if audio.shape[0] > length: |
|
audio = audio[:length] |
|
else: |
|
audio = np.pad(audio, (0, int(length - audio.shape[0]))) |
|
return audio |
|
|
|
|
|
def random_select_audio_segment(audio: np.ndarray, length: int) -> np.ndarray: |
|
"""get an audio segment given the length |
|
|
|
Args: |
|
audio (np.ndarray): |
|
length (int): audio length = sampling_rate * duration |
|
""" |
|
if audio.shape[0] < length: |
|
audio = np.pad(audio, (0, int(length - audio.shape[0]))) |
|
start_index = random.randint(0, audio.shape[0] - length) |
|
end_index = int(start_index + length) |
|
|
|
return audio[start_index:end_index] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SparkTTSModel(PreTrainedModel, GenerationMixin): |
|
""" |
|
Spark-TTS model integrating a Language Model (LLM) for sequence generation, |
|
a Wav2Vec2 model for feature extraction, and a BiCodec model for audio |
|
tokenization and synthesis. Designed for compatibility with the Hugging Face ecosystem. |
|
""" |
|
config_class = SparkTTSConfig |
|
base_model_prefix = "spark_tts" |
|
main_input_name = "input_ids" |
|
|
|
def __init__( |
|
self, |
|
config: SparkTTSConfig, |
|
llm: Optional[PreTrainedModel] = None, |
|
wav2vec2_model: Optional[PreTrainedModel] = None, |
|
wav2vec2_processor: Optional[Wav2Vec2FeatureExtractor] = None, |
|
bicodec: Optional[nn.Module] = None, |
|
): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
|
|
self.llm = llm |
|
self.wav2vec2_model = wav2vec2_model |
|
self.wav2vec2_processor = wav2vec2_processor |
|
self.bicodec = bicodec |
|
|
|
|
|
if self.wav2vec2_model: |
|
self.wav2vec2_model.config.output_hidden_states = True |
|
|
|
|
|
if not all([self.llm, self.wav2vec2_model, self.wav2vec2_processor, self.bicodec]): |
|
logger.warning( |
|
"SparkTTSModel initialized without all sub-components. " |
|
"Ensure `from_pretrained` is used for loading a complete model." |
|
) |
|
|
|
def get_input_embeddings(self): |
|
"""Returns the input embeddings of the LLM.""" |
|
if self.llm: |
|
return self.llm.get_input_embeddings() |
|
return None |
|
|
|
def set_input_embeddings(self, value): |
|
"""Sets the input embeddings of the LLM.""" |
|
if self.llm: |
|
self.llm.set_input_embeddings(value) |
|
|
|
def _prepare_wav2vec2_features(self, wav: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Extracts Wav2Vec2 features required by BiCodec. |
|
Input wav should be a batch of waveforms [B, T_audio]. |
|
""" |
|
if not self.wav2vec2_model or not self.wav2vec2_processor: |
|
raise ValueError("Wav2Vec2 model or processor not loaded.") |
|
|
|
|
|
target_device = self.wav2vec2_model.device |
|
target_dtype = self.wav2vec2_model.dtype |
|
|
|
|
|
wav_for_processor = wav.to(device=target_device, dtype=torch.float32) |
|
|
|
|
|
|
|
inputs = self.wav2vec2_processor( |
|
wav_for_processor, |
|
sampling_rate=self.config.sample_rate, |
|
return_tensors="pt", |
|
padding=True, |
|
) |
|
input_values = inputs.input_values.to(target_device) |
|
|
|
|
|
input_values = input_values.to(dtype=target_dtype) |
|
|
|
|
|
|
|
|
|
if input_values.ndim == 3 and input_values.shape[1] == 1: |
|
logger.warning(f"Processor returned 3D input_values {input_values.shape}. Squeezing the channel dimension.") |
|
input_values = input_values.squeeze(1) |
|
elif input_values.ndim != 2: |
|
raise ValueError(f"Expected input_values from processor to be 2D [Batch, Length], but got shape {input_values.shape}") |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
|
feat_outputs = self.wav2vec2_model(input_values) |
|
|
|
|
|
if not feat_outputs.hidden_states: |
|
raise ValueError("Wav2Vec2 model did not return hidden states. Ensure config.output_hidden_states=True.") |
|
if len(feat_outputs.hidden_states) < 17: |
|
|
|
logger.warning(f"Wav2Vec2 model returned {len(feat_outputs.hidden_states)} hidden states. Expected at least 17 for default BiCodec indices (11, 14, 16). Check model architecture or BiCodec indices if this is unexpected.") |
|
|
|
idx1, idx2, idx3 = 11, 14, 16 |
|
if not (0 <= idx1 < len(feat_outputs.hidden_states) and \ |
|
0 <= idx2 < len(feat_outputs.hidden_states) and \ |
|
0 <= idx3 < len(feat_outputs.hidden_states)): |
|
raise ValueError(f"Required hidden state indices ({idx1}, {idx2}, {idx3}) are out of bounds for the {len(feat_outputs.hidden_states)} hidden states returned.") |
|
else: |
|
idx1, idx2, idx3 = 11, 14, 16 |
|
|
|
|
|
feats_mix = ( |
|
feat_outputs.hidden_states[idx1] + |
|
feat_outputs.hidden_states[idx2] + |
|
feat_outputs.hidden_states[idx3] |
|
) / 3 |
|
|
|
|
|
|
|
return feats_mix.to(dtype=target_dtype) |
|
|
|
@torch.no_grad() |
|
def tokenize_audio(self, wav: torch.Tensor, ref_wav: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Tokenizes audio using the BiCodec model. |
|
Args: |
|
wav (torch.Tensor): The main audio waveform [B, T_audio]. (Should be float32 initially) |
|
ref_wav (torch.Tensor): The reference audio waveform [B, T_ref_audio]. (Should be float32 initially) |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: global_tokens, semantic_tokens |
|
""" |
|
if not self.bicodec: |
|
raise ValueError("BiCodec model not loaded.") |
|
|
|
|
|
|
|
feats = self._prepare_wav2vec2_features(wav) |
|
|
|
|
|
|
|
|
|
bicodec_param = next(self.bicodec.parameters()) |
|
target_device = bicodec_param.device |
|
target_dtype = bicodec_param.dtype |
|
|
|
batch = { |
|
|
|
"wav": wav.to(device=target_device, dtype=target_dtype), |
|
"ref_wav": ref_wav.to(device=target_device, dtype=target_dtype), |
|
"feat": feats.to(device=target_device, dtype=target_dtype), |
|
} |
|
|
|
|
|
semantic_tokens, global_tokens = self.bicodec.tokenize(batch) |
|
|
|
return global_tokens, semantic_tokens |
|
|
|
@torch.no_grad() |
|
def detokenize_audio(self, global_tokens: torch.Tensor, semantic_tokens: torch.Tensor) -> np.ndarray: |
|
""" |
|
Detokenizes audio tokens back to a waveform using BiCodec. |
|
Args: |
|
global_tokens (torch.Tensor): Global tokens [B, ...]. |
|
semantic_tokens (torch.Tensor): Semantic tokens [B, ...]. |
|
|
|
Returns: |
|
np.ndarray: The reconstructed waveform [T_audio_out] if B=1, or [B, T_audio_out] if B > 1, |
|
with dtype float32 and values clipped to [-1, 1]. |
|
""" |
|
if not self.bicodec: |
|
raise ValueError("BiCodec model not loaded.") |
|
|
|
target_device = next(self.bicodec.parameters()).device |
|
|
|
|
|
if global_tokens.ndim == 2: |
|
global_tokens = global_tokens.unsqueeze(1) |
|
|
|
logger.debug(f"DEBUG: Detokenizing audio with global tokens {global_tokens.shape}, semantic tokens {semantic_tokens.shape}") |
|
|
|
wav_rec = self.bicodec.detokenize( |
|
semantic_tokens.to(target_device), |
|
global_tokens.to(target_device) |
|
) |
|
|
|
|
|
wav_rec_np = wav_rec.detach().cpu().numpy().astype(np.float32) |
|
wav_rec_np = np.clip(wav_rec_np, -1.0, 1.0) |
|
|
|
logger.debug(f"DEBUG: Wav rec shape after detach and clip: {wav_rec_np.shape}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_wav = wav_rec_np.squeeze() |
|
|
|
|
|
logger.debug(f"DEBUG: Final output wav shape after squeeze: {output_wav.shape}") |
|
|
|
|
|
if output_wav.ndim == 0: |
|
output_wav = np.expand_dims(output_wav, axis=0) |
|
|
|
return output_wav |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids: torch.LongTensor, past_key_values: Optional[list] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs |
|
) -> dict: |
|
""" |
|
Prepares inputs for the generation process (standard method for GenerationMixin). |
|
""" |
|
|
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
|
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
""" |
|
The forward pass primarily delegates to the underlying LLM. |
|
It takes tokenized text/audio prompts as input_ids. |
|
""" |
|
if not self.llm: |
|
raise ValueError("LLM component not loaded.") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.llm( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
return outputs |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[bool, str]] = None, |
|
revision: str = "main", |
|
use_safetensors: Optional[bool] = None, |
|
|
|
state_dict = None, |
|
device_map = None, |
|
low_cpu_mem_usage = None, |
|
torch_dtype = "auto", |
|
quantization_config = None, |
|
trust_remote_code = None, |
|
|
|
subfolder: str = "", |
|
variant: Optional[str] = None, |
|
**kwargs, |
|
): |
|
|
|
if device_map: |
|
logger.warning("`device_map` is not directly supported for this composite model. Use .to(device) after loading.") |
|
if low_cpu_mem_usage: |
|
logger.info("`low_cpu_mem_usage` is set, but simplified loading is used. Memory usage might not be optimized.") |
|
if trust_remote_code is None: |
|
logger.warning("Loading SparkTTSModel requires custom code. Setting `trust_remote_code=True`.") |
|
trust_remote_code = True |
|
elif not trust_remote_code: |
|
raise ValueError("Loading SparkTTSModel requires `trust_remote_code=True`.") |
|
|
|
kwargs.pop("output_loading_info", None) |
|
kwargs.pop("_from_auto", None) |
|
kwargs.pop("attn_implementation", None) |
|
|
|
|
|
if state_dict is not None: |
|
raise ValueError("Explicitly passing `state_dict` is not supported for this composite model.") |
|
if pretrained_model_name_or_path is None: |
|
raise ValueError("`pretrained_model_name_or_path` must be provided.") |
|
|
|
is_local = Path(pretrained_model_name_or_path).is_dir() |
|
if local_files_only and not is_local: |
|
raise ValueError(f"Cannot find local directory at {pretrained_model_name_or_path} when `local_files_only=True`.") |
|
|
|
if is_local: |
|
resolved_model_path = Path(pretrained_model_name_or_path) |
|
logger.info(f"Loading model from local directory: {resolved_model_path}") |
|
else: |
|
logger.info(f"{pretrained_model_name_or_path} is not a local directory. Assuming Hub ID and downloading.") |
|
try: |
|
|
|
|
|
resolved_model_path_str = snapshot_download( |
|
repo_id=str(pretrained_model_name_or_path), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
allow_patterns=[ |
|
"*.json", "*.safetensors", "*.bin", "*.yaml", "*.txt", |
|
"README.md", ".gitattributes", |
|
"LLM/*", "BiCodec/*", "wav2vec2-large-xlsr-53/*" |
|
], |
|
ignore_patterns=["*.git*", "*.h5", "*.ot", "*.msgpack"], |
|
repo_type="model", |
|
|
|
|
|
) |
|
resolved_model_path = Path(resolved_model_path_str) |
|
logger.info(f"Model files downloaded to cache: {resolved_model_path}") |
|
except Exception as e: |
|
|
|
if isinstance(e, TypeError) and 'unexpected keyword argument' in str(e): |
|
logger.error(f"snapshot_download() received an unexpected keyword argument. Check huggingface_hub version compatibility. Error: {e}") |
|
raise OSError( |
|
f"Failed to download model '{pretrained_model_name_or_path}' (revision: '{revision}') from Hugging Face Hub. " |
|
f"Error: {e}" |
|
) |
|
|
|
if not resolved_model_path.is_dir(): |
|
raise EnvironmentError(f"Resolved model path is not a directory: {resolved_model_path}") |
|
|
|
|
|
if subfolder: |
|
resolved_model_path_with_subfolder = resolved_model_path / subfolder |
|
if not resolved_model_path_with_subfolder.is_dir(): |
|
raise EnvironmentError(f"Subfolder '{subfolder}' not found within the resolved path: {resolved_model_path}") |
|
resolved_model_path = resolved_model_path_with_subfolder |
|
logger.info(f"Using subfolder within resolved path: {resolved_model_path}") |
|
|
|
|
|
|
|
if not isinstance(config, PretrainedConfig): |
|
|
|
config_path = config if config is not None else resolved_model_path |
|
try: |
|
loaded_config, model_kwargs = SparkTTSConfig.from_pretrained( |
|
config_path, |
|
*model_args, |
|
cache_dir=cache_dir, |
|
force_download=force_download if not is_local else False, |
|
local_files_only=local_files_only or is_local, |
|
token=token, |
|
revision=revision, |
|
trust_remote_code=trust_remote_code, |
|
subfolder="", |
|
return_unused_kwargs=True, |
|
**kwargs, |
|
) |
|
config = loaded_config |
|
kwargs = model_kwargs |
|
except OSError as e: |
|
raise OSError(f"Cannot load config from {config_path}. Check `config.json` exists and is correctly formatted. Error: {e}") |
|
|
|
|
|
final_torch_dtype = torch_dtype |
|
if final_torch_dtype == "auto": |
|
final_torch_dtype = getattr(config, "torch_dtype", None) |
|
if isinstance(final_torch_dtype, str) and final_torch_dtype != "auto": |
|
try: |
|
final_torch_dtype = getattr(torch, final_torch_dtype) |
|
except AttributeError: |
|
logger.warning(f"Invalid torch_dtype string: {final_torch_dtype}. Falling back to default.") |
|
final_torch_dtype = None |
|
elif final_torch_dtype == "auto": |
|
final_torch_dtype = None |
|
|
|
|
|
def _resolve_sub_path(sub_path_str): |
|
p = Path(sub_path_str) |
|
if p.is_absolute(): |
|
if not p.exists(): logger.warning(f"Absolute path specified for sub-component does not exist: {p}") |
|
return str(p) |
|
else: |
|
|
|
resolved = resolved_model_path / p |
|
if not resolved.exists(): |
|
resolved_alt = resolved_model_path / sub_path_str.lstrip('./') |
|
if resolved_alt.exists(): |
|
resolved = resolved_alt |
|
else: |
|
raise FileNotFoundError(f"Could not resolve sub-component path: {resolved} (relative to {resolved_model_path})") |
|
return str(resolved) |
|
|
|
|
|
component_loading_kwargs = { |
|
"cache_dir": cache_dir, |
|
"force_download": force_download, |
|
"local_files_only": local_files_only, |
|
"token": token, |
|
"revision": revision, |
|
"trust_remote_code": trust_remote_code, |
|
"torch_dtype": final_torch_dtype, |
|
"use_safetensors": use_safetensors, |
|
"quantization_config": quantization_config if quantization_config else None, |
|
"variant": variant, |
|
**kwargs, |
|
} |
|
|
|
|
|
|
|
|
|
llm_path = _resolve_sub_path(config.llm_model_name_or_path) |
|
logger.info(f"Loading LLM from resolved path: {llm_path}") |
|
try: |
|
|
|
llm = AutoModelForCausalLM.from_pretrained( |
|
llm_path, subfolder="", **component_loading_kwargs |
|
) |
|
except Exception as e: |
|
raise OSError(f"Failed to load LLM from {llm_path}: {e}") |
|
|
|
|
|
w2v_path = _resolve_sub_path(config.wav2vec2_model_name_or_path) |
|
logger.info(f"Loading Wav2Vec2 components from resolved path: {w2v_path}") |
|
try: |
|
|
|
wav2vec2_processor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
w2v_path, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder="", |
|
) |
|
|
|
wav2vec2_model = Wav2Vec2Model.from_pretrained( |
|
w2v_path, subfolder="", **component_loading_kwargs |
|
) |
|
wav2vec2_model.config.output_hidden_states = True |
|
except Exception as e: |
|
raise OSError(f"Failed to load Wav2Vec2 components from {w2v_path}: {e}") |
|
|
|
|
|
bicodec_path = _resolve_sub_path(config.bicodec_model_name_or_path) |
|
logger.info(f"Loading BiCodec from resolved path: {bicodec_path}") |
|
if not config.bicodec_config: |
|
raise ValueError("BiCodec configuration (`bicodec_config`) not found in SparkTTSConfig.") |
|
try: |
|
bicodec = BiCodec.load_from_config_and_checkpoint( |
|
model_dir=Path(bicodec_path), |
|
bicodec_config_object=config.bicodec_config |
|
) |
|
if not isinstance(bicodec, torch.nn.Module): |
|
logger.warning("Loaded BiCodec component is not an instance of torch.nn.Module.") |
|
if isinstance(bicodec, torch.nn.Module) and final_torch_dtype: |
|
bicodec = bicodec.to(dtype=final_torch_dtype) |
|
except FileNotFoundError as e: |
|
raise OSError(f"Failed to load BiCodec: Required file not found in {bicodec_path}. Error: {e}") |
|
except Exception as e: |
|
logger.error(f"Raw error loading BiCodec: {type(e).__name__}: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
raise OSError(f"Failed to load BiCodec from {bicodec_path}. Error: {e}") |
|
|
|
|
|
|
|
model = cls( |
|
config, |
|
llm=llm, |
|
wav2vec2_model=wav2vec2_model, |
|
wav2vec2_processor=wav2vec2_processor, |
|
bicodec=bicodec |
|
) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
final_device = torch.device("cuda") |
|
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): |
|
final_device = torch.device("mps") |
|
else: |
|
final_device = torch.device("cpu") |
|
logger.info(f"Placing SparkTTSModel and components on device: {final_device}") |
|
try: |
|
model.to(final_device) |
|
except Exception as e: |
|
logger.error(f"Failed to move model to device {final_device}. Error: {e}") |
|
|
|
|
|
return model |