# coding=utf-8 # Copyright 2025 SparkAudio & The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SparkTTS model.""" import os import re import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import weight_norm, remove_weight_norm # Needed for modules import torchaudio # Needed for mel transformer in BiCodec import numpy as np # Needed for BiCodecTokenizer logic from pathlib import Path from typing import Optional, Union, Tuple, List, Dict, Any from collections import namedtuple # For Perceiver from functools import wraps, partial # For Perceiver/FSQ from contextlib import nullcontext # For FSQ from huggingface_hub import snapshot_download from safetensors.torch import load_file # For BiCodec loading from transformers.modeling_utils import PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast # LLM output type from transformers.generation import GenerationMixin from transformers.configuration_utils import PretrainedConfig from transformers.models.auto.modeling_auto import AutoModelForCausalLM from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model from transformers.models.wav2vec2.feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor # Needed for from_pretrained from transformers.utils import logging from transformers import AutoTokenizer # Needed for token parser test from einops import rearrange, repeat, pack, unpack # Needed for modules from einops.layers.torch import Rearrange # Needed for modules from packaging import version # Needed for Perceiver from torch import Tensor, int32, einsum from torch.amp import autocast from einops import rearrange, reduce, pack, unpack from numpy.lib.stride_tricks import sliding_window_view import soxr import soundfile # Import custom config from .configuration_spark_tts import SparkTTSConfig, SparkTTSBiCodecConfig logger = logging.get_logger(__name__) # ============================================================================= # >> START: PASTE CODE FROM sparktts/modules/* HERE << # ============================================================================= # IMPORTANT: All classes defined in sparktts/modules/* (layers, samper, vocos, # fsq, residual_fsq, ecapa_tdnn, pooling_layers, perceiver_encoder, # speaker_encoder, feat_encoder, feat_decoder, wave_generator, # factorized_vector_quantize) need to be pasted or defined *within* this file # so they can be found when `trust_remote_code=True` is used. # Example placeholder comment: # --- Paste sparktts/modules/blocks/layers.py content here --- def WNConv1d(*args, **kwargs): return weight_norm(nn.Conv1d(*args, **kwargs)) def WNConvTranspose1d(*args, **kwargs): return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) # Scripting this brings model speed up 1.4x @torch.jit.script def snake(x, alpha): shape = x.shape x = x.reshape(shape[0], shape[1], -1) x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2) x = x.reshape(shape) return x class Snake1d(nn.Module): def __init__(self, channels): super().__init__() self.alpha = nn.Parameter(torch.ones(1, channels, 1)) def forward(self, x): return snake(x, self.alpha) class ResidualUnit(nn.Module): def __init__(self, dim: int = 16, dilation: int = 1): super().__init__() pad = ((7 - 1) * dilation) // 2 self.block = nn.Sequential( Snake1d(dim), WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), Snake1d(dim), WNConv1d(dim, dim, kernel_size=1), ) def forward(self, x): y = self.block(x) pad = (x.shape[-1] - y.shape[-1]) // 2 if pad > 0: x = x[..., pad:-pad] return x + y def init_weights(m): if isinstance(m, nn.Conv1d): nn.init.trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) # --- Paste sparktts/modules/blocks/samper.py content here --- class SamplingBlock(nn.Module): """Sampling block for upsampling or downsampling""" def __init__( self, dim: int, groups: int = 1, upsample_scale: int = 1, downsample_scale: int = 1, ) -> None: """ Args: dim: input dimension groups: number of groups upsample_scale: upsampling scale downsample_scale: downsampling scale """ super(SamplingBlock, self).__init__() self.upsample_scale = upsample_scale self.downsample_scale = downsample_scale if self.upsample_scale > 1: self.de_conv_upsampler = nn.Sequential( nn.LeakyReLU(0.2), nn.ConvTranspose1d( dim, dim, kernel_size=upsample_scale * 2, stride=upsample_scale, padding=upsample_scale // 2 + upsample_scale % 2, output_padding=upsample_scale % 2, groups=groups, ), ) if self.downsample_scale > 1: self.conv_downsampler = nn.Sequential( nn.LeakyReLU(0.2), nn.Conv1d( dim, dim, kernel_size=2 * downsample_scale, stride=downsample_scale, padding=downsample_scale // 2 + downsample_scale % 2, groups=groups, ), ) @staticmethod def repeat_upsampler(x, upsample_scale): return x.repeat_interleave(upsample_scale, dim=2) @staticmethod def skip_downsampler(x, downsample_scale): return F.avg_pool1d(x, kernel_size=downsample_scale, stride=downsample_scale) def forward(self, x): x = x.transpose(1, 2) if self.upsample_scale > 1: repeat_res = self.repeat_upsampler(x, self.upsample_scale) deconv_res = self.de_conv_upsampler(x) upmerge_res = repeat_res + deconv_res else: upmerge_res = x repeat_res = x if self.downsample_scale > 1: conv_res = self.conv_downsampler(upmerge_res) skip2_res = self.skip_downsampler(upmerge_res, self.downsample_scale) skip1_res = self.skip_downsampler(repeat_res, self.downsample_scale) else: conv_res = upmerge_res skip2_res = upmerge_res skip1_res = repeat_res final_res = conv_res + skip1_res + skip2_res return final_res # --- Paste sparktts/modules/blocks/vocos.py content here --- class ConvNeXtBlock(nn.Module): """ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. Args: dim (int): Number of input channels. intermediate_dim (int): Dimensionality of the intermediate layer. layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. Defaults to None. adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. None means non-conditional LayerNorm. Defaults to None. """ def __init__( self, dim: int, intermediate_dim: int, layer_scale_init_value: float, condition_dim: Optional[int] = None, ): super().__init__() self.dwconv = nn.Conv1d( dim, dim, kernel_size=7, padding=3, groups=dim ) # depthwise conv self.adanorm = condition_dim is not None if condition_dim: self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) else: self.norm = nn.LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear( dim, intermediate_dim ) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(intermediate_dim, dim) self.gamma = ( nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None ) def forward( self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None ) -> torch.Tensor: residual = x x = self.dwconv(x) x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) if self.adanorm: assert cond_embedding_id is not None x = self.norm(x, cond_embedding_id) else: x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) x = residual + x return x class AdaLayerNorm(nn.Module): """ Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes Args: condition_dim (int): Dimension of the condition. embedding_dim (int): Dimension of the embeddings. """ def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.dim = embedding_dim self.scale = nn.Linear(condition_dim, embedding_dim) self.shift = nn.Linear(condition_dim, embedding_dim) torch.nn.init.ones_(self.scale.weight) torch.nn.init.zeros_(self.shift.weight) def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor: scale = self.scale(cond_embedding) shift = self.shift(cond_embedding) x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) x = x * scale.unsqueeze(1) + shift.unsqueeze(1) return x class ResBlock1(nn.Module): """ ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, but without upsampling layers. Args: dim (int): Number of input channels. kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. dilation (tuple[int], optional): Dilation factors for the dilated convolutions. Defaults to (1, 3, 5). lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. Defaults to 0.1. layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. Defaults to None. """ def __init__( self, dim: int, kernel_size: int = 3, dilation: Tuple[int, int, int] = (1, 3, 5), lrelu_slope: float = 0.1, layer_scale_init_value: Optional[float] = None, ): super().__init__() self.lrelu_slope = lrelu_slope self.convs1 = nn.ModuleList( [ weight_norm( nn.Conv1d( dim, dim, kernel_size, 1, dilation=dilation[0], padding=self.get_padding(kernel_size, dilation[0]), ) ), weight_norm( nn.Conv1d( dim, dim, kernel_size, 1, dilation=dilation[1], padding=self.get_padding(kernel_size, dilation[1]), ) ), weight_norm( nn.Conv1d( dim, dim, kernel_size, 1, dilation=dilation[2], padding=self.get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs2 = nn.ModuleList( [ weight_norm( nn.Conv1d( dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1), ) ), weight_norm( nn.Conv1d( dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1), ) ), ] ) self.gamma = nn.ParameterList( [ ( nn.Parameter( layer_scale_init_value * torch.ones(dim, 1), requires_grad=True ) if layer_scale_init_value is not None else None ), ( nn.Parameter( layer_scale_init_value * torch.ones(dim, 1), requires_grad=True ) if layer_scale_init_value is not None else None ), ( nn.Parameter( layer_scale_init_value * torch.ones(dim, 1), requires_grad=True ) if layer_scale_init_value is not None else None ), ] ) def forward(self, x: torch.Tensor) -> torch.Tensor: for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) xt = c1(xt) xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) xt = c2(xt) if gamma is not None: xt = gamma * xt x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) @staticmethod def get_padding(kernel_size: int, dilation: int = 1) -> int: return int((kernel_size * dilation - dilation) / 2) class Backbone(nn.Module): """Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: """ Args: x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, C denotes output features, and L is the sequence length. Returns: Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, and H denotes the model dimension. """ raise NotImplementedError("Subclasses must implement the forward method.") class VocosBackbone(Backbone): """ Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization Args: input_channels (int): Number of input features channels. dim (int): Hidden dimension of the model. intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. num_layers (int): Number of ConvNeXtBlock layers. layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. None means non-conditional model. Defaults to None. """ def __init__( self, input_channels: int, dim: int, intermediate_dim: int, num_layers: int, layer_scale_init_value: Optional[float] = None, condition_dim: Optional[int] = None, ): super().__init__() self.input_channels = input_channels self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) self.adanorm = condition_dim is not None if condition_dim: self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) else: self.norm = nn.LayerNorm(dim, eps=1e-6) layer_scale_init_value = layer_scale_init_value or 1 / num_layers self.convnext = nn.ModuleList( [ ConvNeXtBlock( dim=dim, intermediate_dim=intermediate_dim, layer_scale_init_value=layer_scale_init_value, condition_dim=condition_dim, ) for _ in range(num_layers) ] ) self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv1d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor: x = self.embed(x) if self.adanorm: assert condition is not None x = self.norm(x.transpose(1, 2), condition) else: x = self.norm(x.transpose(1, 2)) x = x.transpose(1, 2) for conv_block in self.convnext: x = conv_block(x, condition) x = self.final_layer_norm(x.transpose(1, 2)) return x class VocosResNetBackbone(Backbone): """ Vocos backbone module built with ResBlocks. Args: input_channels (int): Number of input features channels. dim (int): Hidden dimension of the model. num_blocks (int): Number of ResBlock1 blocks. layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. """ def __init__( self, input_channels, dim, num_blocks, layer_scale_init_value=None, ): super().__init__() self.input_channels = input_channels self.embed = weight_norm( nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) ) layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 self.resnet = nn.Sequential( *[ ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks) ] ) def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: x = self.embed(x) x = self.resnet(x) x = x.transpose(1, 2) return x # --- Paste sparktts/modules/fsq/finite_scalar_quantization.py content here --- def exists(v): return v is not None def default(*args): for arg in args: if exists(arg): return arg return None def maybe(fn): @wraps(fn) def inner(x, *args, **kwargs): if not exists(x): return x return fn(x, *args, **kwargs) return inner def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] # tensor helpers def round_ste(z: Tensor) -> Tensor: """Round with straight through gradients.""" zhat = z.round() return z + (zhat - z).detach() # main class class FSQ(nn.Module): def __init__( self, levels: List[int], dim: int | None = None, num_codebooks=1, keep_num_codebooks_dim: bool | None = None, scale: float | None = None, allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64), channel_first: bool = False, projection_has_bias: bool = True, return_indices=True, force_quantization_f32=True, ): super().__init__() _levels = torch.tensor(levels, dtype=int32) self.register_buffer("_levels", _levels, persistent=False) _basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32) self.register_buffer("_basis", _basis, persistent=False) self.scale = scale codebook_dim = len(levels) self.codebook_dim = codebook_dim effective_codebook_dim = codebook_dim * num_codebooks self.num_codebooks = num_codebooks self.effective_codebook_dim = effective_codebook_dim keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1) assert not (num_codebooks > 1 and not keep_num_codebooks_dim) self.keep_num_codebooks_dim = keep_num_codebooks_dim self.dim = default(dim, len(_levels) * num_codebooks) self.channel_first = channel_first has_projections = self.dim != effective_codebook_dim self.project_in = ( nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias) if has_projections else nn.Identity() ) self.project_out = ( nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias) if has_projections else nn.Identity() ) self.has_projections = has_projections self.return_indices = return_indices if return_indices: self.codebook_size = self._levels.prod().item() implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size)) self.register_buffer( "implicit_codebook", implicit_codebook, persistent=False ) self.allowed_dtypes = allowed_dtypes self.force_quantization_f32 = force_quantization_f32 def bound(self, z, eps: float = 1e-3): """Bound `z`, an array of shape (..., d).""" half_l = (self._levels - 1) * (1 + eps) / 2 offset = torch.where(self._levels % 2 == 0, 0.5, 0.0) shift = (offset / half_l).atanh() return (z + shift).tanh() * half_l - offset def quantize(self, z): """Quantizes z, returns quantized zhat, same shape as z.""" quantized = round_ste(self.bound(z)) half_width = self._levels // 2 # Renormalize to [-1, 1]. return quantized / half_width def _scale_and_shift(self, zhat_normalized): half_width = self._levels // 2 return (zhat_normalized * half_width) + half_width def _scale_and_shift_inverse(self, zhat): half_width = self._levels // 2 return (zhat - half_width) / half_width def _indices_to_codes(self, indices): level_indices = self.indices_to_level_indices(indices) codes = self._scale_and_shift_inverse(level_indices) return codes def codes_to_indices(self, zhat): """Converts a `code` to an index in the codebook.""" assert zhat.shape[-1] == self.codebook_dim zhat = self._scale_and_shift(zhat) return (zhat * self._basis).sum(dim=-1).to(int32) def indices_to_level_indices(self, indices): """Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings""" indices = rearrange(indices, "... -> ... 1") codes_non_centered = (indices // self._basis) % self._levels return codes_non_centered def indices_to_codes(self, indices): """Inverse of `codes_to_indices`.""" assert exists(indices) is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) codes = self._indices_to_codes(indices) if self.keep_num_codebooks_dim: codes = rearrange(codes, "... c d -> ... (c d)") codes = self.project_out(codes) if is_img_or_video or self.channel_first: codes = rearrange(codes, "b ... d -> b d ...") return codes def forward(self, z): """ einstein notation b - batch n - sequence (or flattened spatial dimensions) d - feature dimension c - number of codebook dim """ is_img_or_video = z.ndim >= 4 need_move_channel_last = is_img_or_video or self.channel_first # standardize image or video into (batch, seq, dimension) if need_move_channel_last: z = rearrange(z, "b d ... -> b ... d") z, ps = pack_one(z, "b * d") assert ( z.shape[-1] == self.dim ), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}" z = self.project_in(z) z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks) # whether to force quantization step to be full precision or not force_f32 = self.force_quantization_f32 quantization_context = ( partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext ) with quantization_context(): orig_dtype = z.dtype if force_f32 and orig_dtype not in self.allowed_dtypes: z = z.float() codes = self.quantize(z) # returning indices could be optional indices = None if self.return_indices: indices = self.codes_to_indices(codes) codes = rearrange(codes, "b n c d -> b n (c d)") codes = codes.type(orig_dtype) # project out out = self.project_out(codes) # reconstitute image or video dimensions if need_move_channel_last: out = unpack_one(out, ps, "b * d") out = rearrange(out, "b ... d -> b d ...") indices = maybe(unpack_one)(indices, ps, "b * c") if not self.keep_num_codebooks_dim and self.return_indices: indices = maybe(rearrange)(indices, "... 1 -> ...") # return quantized output and indices return out, indices # --- Paste sparktts/modules/fsq/residual_fsq.py content here --- import random import torch.distributed as dist from einx import get_at def round_up_multiple(num, mult): return ceil(num / mult) * mult def is_distributed(): return dist.is_initialized() and dist.get_world_size() > 1 def get_maybe_sync_seed(device, max_size=10_000): rand_int = torch.randint(0, max_size, (), device=device) if is_distributed(): dist.all_reduce(rand_int) return rand_int.item() class ResidualFSQ(nn.Module): """Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf""" def __init__( self, *, levels: List[int], num_quantizers, dim=None, is_channel_first=False, quantize_dropout=False, quantize_dropout_cutoff_index=0, quantize_dropout_multiple_of=1, **kwargs, ): super().__init__() codebook_dim = len(levels) dim = default(dim, codebook_dim) requires_projection = codebook_dim != dim self.project_in = ( nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity() ) self.project_out = ( nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity() ) self.has_projections = requires_projection self.is_channel_first = is_channel_first self.num_quantizers = num_quantizers self.levels = levels self.layers = nn.ModuleList([]) levels_tensor = torch.Tensor(levels) scales = [] for ind in range(num_quantizers): scales.append((levels_tensor - 1) ** -ind) fsq = FSQ(levels=levels, dim=codebook_dim, **kwargs) self.layers.append(fsq) assert all([not fsq.has_projections for fsq in self.layers]) self.codebook_size = self.layers[0].codebook_size self.register_buffer("scales", torch.stack(scales), persistent=False) self.quantize_dropout = quantize_dropout and num_quantizers > 1 assert quantize_dropout_cutoff_index >= 0 self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index self.quantize_dropout_multiple_of = quantize_dropout_multiple_of # encodec paper proposes structured dropout, believe this was set to 4 @property def codebooks(self): codebooks = [layer.implicit_codebook for layer in self.layers] codebooks = torch.stack(codebooks, dim=0) return codebooks def get_codes_from_indices(self, indices): batch, quantize_dim = indices.shape[0], indices.shape[-1] # may also receive indices in the shape of 'b h w q' (accept_image_fmap) indices, ps = pack([indices], "b * q") # because of quantize dropout, one can pass in indices that are coarse # and the network should be able to reconstruct if quantize_dim < self.num_quantizers: assert ( self.quantize_dropout > 0.0 ), "quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations" indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value=-1) # take care of quantizer dropout mask = indices == -1 indices = indices.masked_fill( mask, 0 ) # have it fetch a dummy code to be masked out later all_codes = get_at("q [c] d, b n q -> q b n d", self.codebooks, indices) # mask out any codes that were dropout-ed all_codes = all_codes.masked_fill(rearrange(mask, "b n q -> q b n 1"), 0.0) # scale the codes scales = rearrange(self.scales, "q d -> q 1 1 d") all_codes = all_codes * scales # if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension) (all_codes,) = unpack(all_codes, ps, "q b * d") return all_codes def get_output_from_indices(self, indices): codes = self.get_codes_from_indices(indices) codes_summed = reduce(codes, "q ... -> ...", "sum") return self.project_out(codes_summed) def forward(self, x, return_all_codes=False, rand_quantize_dropout_fixed_seed=None): num_quant, quant_dropout_multiple_of, device = ( self.num_quantizers, self.quantize_dropout_multiple_of, x.device, ) # handle channel first if self.is_channel_first: x = rearrange(x, "b d ... -> b ... d") x, ps = pack([x], "b * d") # maybe project in x = self.project_in(x) quantized_out = 0.0 residual = x all_indices = [] should_quantize_dropout = self.training and self.quantize_dropout # sample a layer index at which to dropout further residual quantization # also prepare null indices if should_quantize_dropout: # check if seed is manually passed in if not exists(rand_quantize_dropout_fixed_seed): rand_quantize_dropout_fixed_seed = get_maybe_sync_seed(device) rand = random.Random(rand_quantize_dropout_fixed_seed) rand_quantize_dropout_index = rand.randrange( self.quantize_dropout_cutoff_index, num_quant ) if quant_dropout_multiple_of != 1: rand_quantize_dropout_index = ( round_up_multiple( rand_quantize_dropout_index + 1, quant_dropout_multiple_of ) - 1 ) null_indices = torch.full( x.shape[:2], -1.0, device=device, dtype=torch.long ) # go through the layers with autocast("cuda", enabled=False): for quantizer_index, (layer, scale) in enumerate( zip(self.layers, self.scales) ): if ( should_quantize_dropout and quantizer_index > rand_quantize_dropout_index ): all_indices.append(null_indices) continue quantized, indices = layer(residual / scale) quantized = quantized * scale residual = residual - quantized.detach() quantized_out = quantized_out + quantized all_indices.append(indices) # project out, if needed quantized_out = self.project_out(quantized_out) # stack all indices all_indices = torch.stack(all_indices, dim=-1) # channel first out if self.is_channel_first: (quantized_out,) = unpack(quantized_out, ps, "b * d") (all_indices,) = unpack(all_indices, ps, "b * d") quantized_out = rearrange(quantized_out, "b ... d -> b d ...") all_indices = rearrange(all_indices, "b ... d -> b d ...") # return ret = (quantized_out, all_indices) if not return_all_codes: return ret # whether to return all codes from all codebooks across layers all_codes = self.get_codes_from_indices(all_indices) # will return all codes in shape (quantizer, batch, sequence length, codebook dimension) return (*ret, all_codes) # grouped residual fsq class GroupedResidualFSQ(nn.Module): def __init__(self, *, dim, groups=1, accept_image_fmap=False, **kwargs): super().__init__() self.dim = dim self.groups = groups assert (dim % groups) == 0 dim_per_group = dim // groups self.accept_image_fmap = accept_image_fmap self.rvqs = nn.ModuleList([]) for _ in range(groups): self.rvqs.append(ResidualFSQ(dim=dim_per_group, **kwargs)) self.codebook_size = self.rvqs[0].codebook_size @property def codebooks(self): return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs)) @property def split_dim(self): return 1 if self.accept_image_fmap else -1 def get_codes_from_indices(self, indices): codes = tuple( rvq.get_codes_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices) ) return torch.stack(codes) def get_output_from_indices(self, indices): outputs = tuple( rvq.get_output_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices) ) return torch.cat(outputs, dim=self.split_dim) def forward(self, x, return_all_codes=False): shape, split_dim, device = x.shape, self.split_dim, x.device assert shape[split_dim] == self.dim # split the feature dimension into groups x = x.chunk(self.groups, dim=split_dim) forward_kwargs = dict( return_all_codes=return_all_codes, rand_quantize_dropout_fixed_seed=( get_maybe_sync_seed(device) if self.training else None ), ) # invoke residual vq on each group out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x)) out = tuple(zip(*out)) # otherwise, get all the zipped outputs and combine them quantized, all_indices, *maybe_all_codes = out quantized = torch.cat(quantized, dim=split_dim) all_indices = torch.stack(all_indices) ret = (quantized, all_indices, *maybe_all_codes) return ret # --- Paste sparktts/modules/speaker/pooling_layers.py content here --- class TAP(nn.Module): """ Temporal average pooling, only first-order mean is considered """ def __init__(self, in_dim=0, **kwargs): super(TAP, self).__init__() self.in_dim = in_dim def forward(self, x): pooling_mean = x.mean(dim=-1) # To be compatable with 2D input pooling_mean = pooling_mean.flatten(start_dim=1) return pooling_mean def get_out_dim(self): self.out_dim = self.in_dim return self.out_dim class TSDP(nn.Module): """ Temporal standard deviation pooling, only second-order std is considered """ def __init__(self, in_dim=0, **kwargs): super(TSDP, self).__init__() self.in_dim = in_dim def forward(self, x): # The last dimension is the temporal axis pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7) pooling_std = pooling_std.flatten(start_dim=1) return pooling_std def get_out_dim(self): self.out_dim = self.in_dim return self.out_dim class TSTP(nn.Module): """ Temporal statistics pooling, concatenate mean and std, which is used in x-vector Comment: simple concatenation can not make full use of both statistics """ def __init__(self, in_dim=0, **kwargs): super(TSTP, self).__init__() self.in_dim = in_dim def forward(self, x): # The last dimension is the temporal axis pooling_mean = x.mean(dim=-1) pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7) pooling_mean = pooling_mean.flatten(start_dim=1) pooling_std = pooling_std.flatten(start_dim=1) stats = torch.cat((pooling_mean, pooling_std), 1) return stats def get_out_dim(self): self.out_dim = self.in_dim * 2 return self.out_dim class ASTP(nn.Module): """ Attentive statistics pooling: Channel- and context-dependent statistics pooling, first used in ECAPA_TDNN. """ def __init__(self, in_dim, bottleneck_dim=128, global_context_att=False, **kwargs): super(ASTP, self).__init__() self.in_dim = in_dim self.global_context_att = global_context_att # Use Conv1d with stride == 1 rather than Linear, then we don't # need to transpose inputs. if global_context_att: self.linear1 = nn.Conv1d( in_dim * 3, bottleneck_dim, kernel_size=1) # equals W and b in the paper else: self.linear1 = nn.Conv1d( in_dim, bottleneck_dim, kernel_size=1) # equals W and b in the paper self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, kernel_size=1) # equals V and k in the paper def forward(self, x): """ x: a 3-dimensional tensor in tdnn-based architecture (B,F,T) or a 4-dimensional tensor in resnet architecture (B,C,F,T) 0-dim: batch-dimension, last-dim: time-dimension (frame-dimension) """ if len(x.shape) == 4: x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3]) assert len(x.shape) == 3 if self.global_context_att: context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) context_std = torch.sqrt( torch.var(x, dim=-1, keepdim=True) + 1e-7).expand_as(x) x_in = torch.cat((x, context_mean, context_std), dim=1) else: x_in = x # DON'T use ReLU here! ReLU may be hard to converge. alpha = torch.tanh( self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in)) alpha = torch.softmax(self.linear2(alpha), dim=2) mean = torch.sum(alpha * x, dim=2) var = torch.sum(alpha * (x**2), dim=2) - mean**2 std = torch.sqrt(var.clamp(min=1e-7)) return torch.cat([mean, std], dim=1) def get_out_dim(self): self.out_dim = 2 * self.in_dim return self.out_dim class MHASTP(torch.nn.Module): """ Multi head attentive statistics pooling Reference: Self Multi-Head Attention for Speaker Recognition https://arxiv.org/pdf/1906.09890.pdf """ def __init__(self, in_dim, layer_num=2, head_num=2, d_s=1, bottleneck_dim=64, **kwargs): super(MHASTP, self).__init__() assert (in_dim % head_num ) == 0 # make sure that head num can be divided by input_dim self.in_dim = in_dim self.head_num = head_num d_model = int(in_dim / head_num) channel_dims = [bottleneck_dim for i in range(layer_num + 1)] if d_s > 1: d_s = d_model else: d_s = 1 self.d_s = d_s channel_dims[0], channel_dims[-1] = d_model, d_s heads_att_trans = [] for i in range(self.head_num): att_trans = nn.Sequential() for i in range(layer_num - 1): att_trans.add_module( 'att_' + str(i), nn.Conv1d(channel_dims[i], channel_dims[i + 1], 1, 1)) att_trans.add_module('tanh' + str(i), nn.Tanh()) att_trans.add_module( 'att_' + str(layer_num - 1), nn.Conv1d(channel_dims[layer_num - 1], channel_dims[layer_num], 1, 1)) heads_att_trans.append(att_trans) self.heads_att_trans = nn.ModuleList(heads_att_trans) def forward(self, input): """ input: a 3-dimensional tensor in xvector architecture or a 4-dimensional tensor in resnet architecture 0-dim: batch-dimension, last-dim: time-dimension (frame-dimension) """ if len(input.shape) == 4: # B x F x T input = input.reshape(input.shape[0], input.shape[1] * input.shape[2], input.shape[3]) assert len(input.shape) == 3 bs, f_dim, t_dim = input.shape chunks = torch.chunk(input, self.head_num, 1) # split chunks_out = [] # for i in range(self.head_num): # att_score = self.heads_att_trans[i](chunks[i]) for i, layer in enumerate(self.heads_att_trans): att_score = layer(chunks[i]) alpha = F.softmax(att_score, dim=-1) mean = torch.sum(alpha * chunks[i], dim=2) var = torch.sum(alpha * chunks[i]**2, dim=2) - mean**2 std = torch.sqrt(var.clamp(min=1e-7)) chunks_out.append(torch.cat((mean, std), dim=1)) out = torch.cat(chunks_out, dim=1) return out def get_out_dim(self): self.out_dim = 2 * self.in_dim return self.out_dim class MQMHASTP(torch.nn.Module): """ An attentive pooling Reference: multi query multi head attentive statistics pooling https://arxiv.org/pdf/2110.05042.pdf Args: in_dim: the feature dimension of input layer_num: the number of layer in the pooling layer query_num: the number of querys head_num: the number of heads bottleneck_dim: the bottleneck dimension SA (H = 1, Q = 1, n = 2, d_s = 1) ref: https://www.danielpovey.com/files/2018_interspeech_xvector_attention.pdf MHA (H > 1, Q = 1, n = 1, d_s = 1) ref: https://arxiv.org/pdf/1906.09890.pdf AS (H = 1, Q > 1, n = 2, d_s = 1) ref: https://arxiv.org/pdf/1803.10963.pdf VSA (H = 1, Q > 1, n = 2, d_s = d_h) ref: http://www.interspeech2020.org/uploadfile/pdf/Mon-2-10-5.pdf """ def __init__(self, in_dim, layer_num=2, query_num=2, head_num=8, d_s=2, bottleneck_dim=64, **kwargs): super(MQMHASTP, self).__init__() self.n_query = nn.ModuleList([ MHASTP(in_dim, layer_num=layer_num, head_num=head_num, d_s=d_s, bottleneck_dim=bottleneck_dim) for i in range(query_num) ]) self.query_num = query_num self.in_dim = in_dim def forward(self, input): """ input: a 3-dimensional tensor in xvector architecture or a 4-dimensional tensor in resnet architecture 0-dim: batch-dimension, last-dim: time-dimension (frame-dimension) """ if len(input.shape) == 4: # B x F x T input = input.reshape(input.shape[0], input.shape[1] * input.shape[2], input.shape[3]) assert len(input.shape) == 3 res = [] for i, layer in enumerate(self.n_query): res.append(layer(input)) out = torch.cat(res, dim=-1) return out def get_out_dim(self): self.out_dim = self.in_dim * 2 * self.query_num return self.out_dim # --- Paste sparktts/modules/speaker/ecapa_tdnn.py content here --- class Res2Conv1dReluBn(nn.Module): """ in_channels == out_channels == channels """ def __init__( self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4, ): super().__init__() assert channels % scale == 0, "{} % {} != 0".format(channels, scale) self.scale = scale self.width = channels // scale self.nums = scale if scale == 1 else scale - 1 self.convs = [] self.bns = [] for i in range(self.nums): self.convs.append( nn.Conv1d( self.width, self.width, kernel_size, stride, padding, dilation, bias=bias, ) ) self.bns.append(nn.BatchNorm1d(self.width)) self.convs = nn.ModuleList(self.convs) self.bns = nn.ModuleList(self.bns) def forward(self, x): out = [] spx = torch.split(x, self.width, 1) sp = spx[0] for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): # Order: conv -> relu -> bn if i >= 1: sp = sp + spx[i] sp = conv(sp) sp = bn(F.relu(sp)) out.append(sp) if self.scale != 1: out.append(spx[self.nums]) out = torch.cat(out, dim=1) return out """ Conv1d + BatchNorm1d + ReLU """ class Conv1dReluBn(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, ): super().__init__() self.conv = nn.Conv1d( in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias ) self.bn = nn.BatchNorm1d(out_channels) def forward(self, x): return self.bn(F.relu(self.conv(x))) """ The SE connection of 1D case. """ class SE_Connect(nn.Module): def __init__(self, channels, se_bottleneck_dim=128): super().__init__() self.linear1 = nn.Linear(channels, se_bottleneck_dim) self.linear2 = nn.Linear(se_bottleneck_dim, channels) def forward(self, x): out = x.mean(dim=2) out = F.relu(self.linear1(out)) out = torch.sigmoid(self.linear2(out)) out = x * out.unsqueeze(2) return out """ SE-Res2Block of the ECAPA-TDNN architecture. """ class SE_Res2Block(nn.Module): def __init__(self, channels, kernel_size, stride, padding, dilation, scale): super().__init__() self.se_res2block = nn.Sequential( Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), Res2Conv1dReluBn( channels, kernel_size, stride, padding, dilation, scale=scale ), Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), SE_Connect(channels), ) def forward(self, x): return x + self.se_res2block(x) class ECAPA_TDNN(nn.Module): def __init__( self, channels=512, feat_dim=80, embed_dim=192, pooling_func="ASTP", global_context_att=False, emb_bn=False, ): super().__init__() self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2) self.layer2 = SE_Res2Block( channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8 ) self.layer3 = SE_Res2Block( channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8 ) self.layer4 = SE_Res2Block( channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8 ) cat_channels = channels * 3 out_channels = 512 * 3 self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1) self.pool = globals()[pooling_func]( in_dim=out_channels, global_context_att=global_context_att ) self.pool_out_dim = self.pool.get_out_dim() self.bn = nn.BatchNorm1d(self.pool_out_dim) self.linear = nn.Linear(self.pool_out_dim, embed_dim) self.emb_bn = emb_bn if emb_bn: # better in SSL for SV self.bn2 = nn.BatchNorm1d(embed_dim) else: self.bn2 = nn.Identity() def forward(self, x, return_latent=False): x = x.permute(0, 2, 1) # (B,T,F) -> (B,F,T) out1 = self.layer1(x) out2 = self.layer2(out1) out3 = self.layer3(out2) out4 = self.layer4(out3) out = torch.cat([out2, out3, out4], dim=1) latent = F.relu(self.conv(out)) out = self.bn(self.pool(latent)) out = self.linear(out) if self.emb_bn: out = self.bn2(out) if return_latent: return out, latent return out def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): return ECAPA_TDNN( channels=1024, feat_dim=feat_dim, embed_dim=embed_dim, pooling_func=pooling_func, emb_bn=emb_bn, ) def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): return ECAPA_TDNN( channels=1024, feat_dim=feat_dim, embed_dim=embed_dim, pooling_func=pooling_func, global_context_att=True, emb_bn=emb_bn, ) def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): return ECAPA_TDNN( channels=512, feat_dim=feat_dim, embed_dim=embed_dim, pooling_func=pooling_func, emb_bn=emb_bn, ) def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): return ECAPA_TDNN( channels=512, feat_dim=feat_dim, embed_dim=embed_dim, pooling_func=pooling_func, global_context_att=True, emb_bn=emb_bn, ) # --- Paste sparktts/modules/speaker/perceiver_encoder.py content here --- def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__(self, dropout=0.0, causal=False, use_flash=False): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.causal = causal self.register_buffer("mask", None, persistent=False) self.use_flash = use_flash assert not ( use_flash and version.parse(torch.__version__) < version.parse("2.0.0") ), "in order to use flash attention, you must be using pytorch 2.0 or above" # determine efficient attention configs for cuda and cpu self.config = namedtuple( "EfficientAttentionConfig", ["enable_flash", "enable_math", "enable_mem_efficient"], ) self.cpu_config = self.config(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not use_flash: return device_properties = torch.cuda.get_device_properties(torch.device("cuda")) if device_properties.major == 8 and device_properties.minor == 0: print_once( "A100 GPU detected, using flash attention if input tensor is on cuda" ) self.cuda_config = self.config(True, False, False) else: print_once( "Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda" ) self.cuda_config = self.config(False, True, True) def get_mask(self, n, device): if exists(self.mask) and self.mask.shape[-1] >= n: return self.mask[:n, :n] mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1) self.register_buffer("mask", mask, persistent=False) return mask def flash_attn(self, q, k, v, mask=None): _, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) if k.ndim == 3: k = rearrange(k, "b ... -> b 1 ...").expand_as(q) if v.ndim == 3: v = rearrange(v, "b ... -> b 1 ...").expand_as(q) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask): mask = rearrange(mask, "b j -> b 1 1 j") mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, is_causal=self.causal, ) return out def forward(self, q, k, v, mask=None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device = q.shape[-2], q.device scale = q.shape[-1] ** -0.5 if self.use_flash: return self.flash_attn(q, k, v, mask=mask) kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d" # similarity sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale # key padding mask if exists(mask): mask = rearrange(mask, "b j -> b 1 1 j") sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # causal mask if self.causal: causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v) return out def Sequential(*mods): return nn.Sequential(*filter(exists, mods)) class RMSNorm(nn.Module): def __init__(self, dim, scale=True, dim_cond=None): super().__init__() self.cond = exists(dim_cond) self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None self.scale = dim**0.5 self.gamma = nn.Parameter(torch.ones(dim)) if scale else None def forward(self, x, cond=None): gamma = default(self.gamma, 1) out = F.normalize(x, dim=-1) * self.scale * gamma if not self.cond: return out assert exists(cond) gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1) gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta)) return out * gamma + beta class CausalConv1d(nn.Conv1d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) (kernel_size,) = self.kernel_size (dilation,) = self.dilation (stride,) = self.stride assert stride == 1 self.causal_padding = dilation * (kernel_size - 1) def forward(self, x): causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0) return super().forward(causal_padded_x) class GEGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim=-1) return F.gelu(gate) * x def FeedForward(dim, mult=4, causal_conv=False): dim_inner = int(dim * mult * 2 / 3) conv = None if causal_conv: conv = nn.Sequential( Rearrange("b n d -> b d n"), CausalConv1d(dim_inner, dim_inner, 3), Rearrange("b d n -> b n d"), ) return Sequential( nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim) ) class Attention(nn.Module): def __init__( self, dim, *, dim_context=None, causal=False, dim_head=64, heads=8, dropout=0.0, use_flash=False, cross_attn_include_queries=False, ): super().__init__() self.scale = dim_head**-0.5 self.heads = heads self.cross_attn_include_queries = cross_attn_include_queries dim_inner = dim_head * heads dim_context = default(dim_context, dim) self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash) self.to_q = nn.Linear(dim, dim_inner, bias=False) self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False) self.to_out = nn.Linear(dim_inner, dim, bias=False) def forward(self, x, context=None, mask=None): h, has_context = self.heads, exists(context) context = default(context, x) if has_context and self.cross_attn_include_queries: context = torch.cat((x, context), dim=-2) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1)) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) out = self.attend(q, k, v, mask=mask) out = rearrange(out, "b h n d -> b n (h d)") return self.to_out(out) class PerceiverResampler(nn.Module): def __init__( self, *, dim, depth=2, dim_context=None, num_latents=32, dim_head=64, heads=8, ff_mult=4, use_flash_attn=False, ): super().__init__() dim_context = default(dim_context, dim) self.proj_context = ( nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity() ) self.latents = nn.Parameter(torch.randn(num_latents, dim)) nn.init.normal_(self.latents, std=0.02) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ Attention( dim=dim, dim_head=dim_head, heads=heads, use_flash=use_flash_attn, cross_attn_include_queries=True, ), FeedForward(dim=dim, mult=ff_mult), ] ) ) self.norm = RMSNorm(dim) def forward(self, x, mask=None): batch = x.shape[0] x = self.proj_context(x) latents = repeat(self.latents, "n d -> b n d", b=batch) for attn, ff in self.layers: latents = attn(latents, x, mask=mask) + latents latents = ff(latents) + latents return self.norm(latents) # --- Paste sparktts/modules/speaker/speaker_encoder.py content here --- class SpeakerEncoder(nn.Module): """ Args: input_dim (int): acoustic feature dimension out_dim (int): output dimension of x-vector and d-vector latent_dim (int): latent dimension before quantization token_num (int): sequence length of speaker tokens fsq_levels (List[int]): number of levels for each quantizer fsq_num_quantizers (int): number of quantizers Return: speaker_embs: (B, T2, out_dim) """ def __init__( self, input_dim: int = 100, out_dim: int = 512, latent_dim: int = 128, token_num: int = 32, fsq_levels: List[int] = [4, 4, 4, 4, 4, 4], fsq_num_quantizers: int = 1, ): super(SpeakerEncoder, self).__init__() self.speaker_encoder = ECAPA_TDNN_GLOB_c512( feat_dim=input_dim, embed_dim=out_dim ) self.perceiver_sampler = PerceiverResampler( dim=latent_dim, dim_context=512 * 3, num_latents=token_num ) self.quantizer = ResidualFSQ( levels=fsq_levels, num_quantizers=fsq_num_quantizers, dim=latent_dim, is_channel_first=True, quantize_dropout=False, ) self.project = nn.Linear(latent_dim * token_num, out_dim) def get_codes_from_indices(self, indices: torch.Tensor) -> torch.Tensor: zq = self.quantizer.get_codes_from_indices(indices.transpose(1, 2)) return zq.transpose(1, 2) def get_indices(self, mels: torch.Tensor) -> torch.Tensor: mels = mels.transpose(1, 2) x = self.perceiver_sampler(mels).transpose(1, 2) zq, indices = self.quantizer(x) return indices def forward(self, mels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: mels: (B, D_mel, T1) Return: x_vector: (B, out_dim) d_vector: (B, out_dim) """ # mels = mels.transpose(1,2) x_vector, features = self.speaker_encoder(mels, True) x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2) zq, indices = self.quantizer(x) # zq: (B, latent_dim, T2, latent_dim) x = zq.reshape(zq.shape[0], -1) d_vector = self.project(x) return x_vector, d_vector def tokenize(self, mels: torch.Tensor) -> torch.Tensor: """tokenize the input mel spectrogram""" _, features = self.speaker_encoder(mels, True) x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2) zq, indices = self.quantizer(x) return indices def detokenize(self, indices: torch.Tensor) -> torch.Tensor: """detokenize the input indices to d-vector""" zq = self.quantizer.get_output_from_indices(indices.transpose(1, 2)).transpose(1, 2) x = zq.reshape(zq.shape[0], -1) d_vector = self.project(x) return d_vector # --- Paste sparktts/modules/encoder_decoder/feat_encoder.py content here --- class Encoder(nn.Module): """Encoder module with convnext and downsampling blocks""" def __init__( self, input_channels: int, vocos_dim: int, vocos_intermediate_dim: int, vocos_num_layers: int, out_channels: int, sample_ratios: List[int] = [1, 1], ): super().__init__() """ Encoder module with VocosBackbone and sampling blocks. Args: sample_ratios (List[int]): sample ratios example: [2, 2] means downsample by 2x and then upsample by 2x """ self.encoder = VocosBackbone( input_channels=input_channels, dim=vocos_dim, intermediate_dim=vocos_intermediate_dim, num_layers=vocos_num_layers, condition_dim=None, ) modules = [ nn.Sequential( SamplingBlock( dim=vocos_dim, groups=vocos_dim, downsample_scale=ratio, ), VocosBackbone( input_channels=vocos_dim, dim=vocos_dim, intermediate_dim=vocos_intermediate_dim, num_layers=2, condition_dim=None, ), ) for ratio in sample_ratios ] self.downsample = nn.Sequential(*modules) self.project = nn.Linear(vocos_dim, out_channels) def forward(self, x: torch.Tensor, *args): """ Args: x (torch.Tensor): (batch_size, input_channels, length) Returns: x (torch.Tensor): (batch_size, encode_channels, length) """ x = self.encoder(x) x = self.downsample(x) x = self.project(x) return x.transpose(1, 2) # --- Paste sparktts/modules/encoder_decoder/feat_decoder.py content here --- class Decoder(nn.Module): """Decoder module with convnext and upsampling blocks Args: sample_ratios (List[int]): sample ratios example: [2, 2] means downsample by 2x and then upsample by 2x """ def __init__( self, input_channels: int, vocos_dim: int, vocos_intermediate_dim: int, vocos_num_layers: int, out_channels: int, condition_dim: int = None, sample_ratios: List[int] = [1, 1], use_tanh_at_final: bool = False, ): super().__init__() self.linear_pre = nn.Linear(input_channels, vocos_dim) modules = [ nn.Sequential( SamplingBlock( dim=vocos_dim, groups=vocos_dim, upsample_scale=ratio, ), VocosBackbone( input_channels=vocos_dim, dim=vocos_dim, intermediate_dim=vocos_intermediate_dim, num_layers=2, condition_dim=None, ), ) for ratio in sample_ratios ] self.downsample = nn.Sequential(*modules) self.vocos_backbone = VocosBackbone( input_channels=vocos_dim, dim=vocos_dim, intermediate_dim=vocos_intermediate_dim, num_layers=vocos_num_layers, condition_dim=condition_dim, ) self.linear = nn.Linear(vocos_dim, out_channels) self.use_tanh_at_final = use_tanh_at_final def forward(self, x: torch.Tensor, c: torch.Tensor = None): """encoder forward. Args: x (torch.Tensor): (batch_size, input_channels, length) Returns: x (torch.Tensor): (batch_size, encode_channels, length) """ x = self.linear_pre(x.transpose(1, 2)) x = self.downsample(x).transpose(1, 2) x = self.vocos_backbone(x, condition=c) x = self.linear(x).transpose(1, 2) if self.use_tanh_at_final: x = torch.tanh(x) return x # --- Paste sparktts/modules/encoder_decoder/wave_generator.py content here --- class DecoderBlock(nn.Module): def __init__( self, input_dim: int = 16, output_dim: int = 8, kernel_size: int = 2, stride: int = 1, ): super().__init__() self.block = nn.Sequential( Snake1d(input_dim), WNConvTranspose1d( input_dim, output_dim, kernel_size=kernel_size, stride=stride, padding=(kernel_size - stride) // 2, ), ResidualUnit(output_dim, dilation=1), ResidualUnit(output_dim, dilation=3), ResidualUnit(output_dim, dilation=9), ) def forward(self, x): return self.block(x) class WaveGenerator(nn.Module): def __init__( self, input_channel, channels, rates, kernel_sizes, d_out: int = 1, ): super().__init__() # Add first conv layer layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)] # Add upsampling + MRF blocks for i, (kernel_size, stride) in enumerate(zip(kernel_sizes, rates)): input_dim = channels // 2**i output_dim = channels // 2 ** (i + 1) layers += [DecoderBlock(input_dim, output_dim, kernel_size, stride)] # Add final conv layer layers += [ Snake1d(output_dim), WNConv1d(output_dim, d_out, kernel_size=7, padding=3), nn.Tanh(), ] self.model = nn.Sequential(*layers) self.apply(init_weights) def forward(self, x): return self.model(x) # --- Paste sparktts/modules/vq/factorized_vector_quantize.py content here --- def ema_inplace(moving_avg, new, decay): moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) class FactorizedVectorQuantize(nn.Module): def __init__( self, input_dim: int, codebook_size: int, codebook_dim: int, commitment: float, codebook_loss_weight: float = 1.0, decay: float = 0.99, threshold_ema_dead_code: float = 2, momentum: float = 0.99, **kwargs, ): super().__init__() self.input_dim = input_dim self.codebook_size = codebook_size self.codebook_dim = codebook_dim self.commitment = commitment self.codebook_loss_weight = codebook_loss_weight self.decay = decay self.threshold_ema_dead_code = threshold_ema_dead_code self.momentum = momentum if input_dim != self.codebook_dim: self.in_project = WNConv1d(input_dim, self.codebook_dim, kernel_size=1) self.out_project = WNConv1d(self.codebook_dim, input_dim, kernel_size=1) else: self.in_project = nn.Identity() self.out_project = nn.Identity() self.codebook = nn.Embedding(self.codebook_size, self.codebook_dim) self.register_buffer("cluster_size", torch.zeros(self.codebook_size)) def forward(self, z: torch.Tensor) -> Dict[str, Any]: """Quantized the input tensor using a fixed codebook and returns the corresponding codebook vectors Parameters ---------- z : Tensor[B x D x T] Returns ------- Tensor[B x D x T] Quantized continuous representation of input Tensor[1] Commitment loss to train encoder to predict vectors closer to codebook entries Tensor[1] Codebook loss to update the codebook Tensor[B x T] Codebook indices (quantized discrete representation of input) Tensor[B x D x T] Projected latents (continuous representation of input before quantization) """ # transpose since we use linear # Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim z_e = self.in_project(z) z_q, indices, dists = self.decode_latents(z_e) # statistic the usage of codes embed_onehot = F.one_hot(indices, self.codebook_size).type(z_e.dtype) avg_probs = torch.mean(embed_onehot.reshape(-1, self.codebook_size), dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) active_num = (embed_onehot.sum(0).sum(0) > 0).sum() if self.training: # We do the expiry of code at that point as buffers are in sync # and all the workers will take the same decision. ema_inplace(self.cluster_size, embed_onehot.sum(0).sum(0), self.decay) active_num = sum(self.cluster_size > self.threshold_ema_dead_code) if self.training: commit_loss = ( F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) * self.commitment ) codebook_loss = ( F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2]) * self.codebook_loss_weight ) else: commit_loss = torch.zeros(0, device=z.device) codebook_loss = torch.zeros(0, device=z.device) z_q = ( z_e + (z_q - z_e).detach() ) # noop in forward pass, straight-through gradient estimator in backward pass z_q = self.out_project(z_q) vq_loss = (commit_loss + codebook_loss).mean() return { "z_q": z_q, "indices": indices, "dists": dists, "vq_loss": vq_loss, "perplexity": perplexity, "active_num": active_num.float(), } def vq2emb(self, vq, out_proj=True): emb = self.embed_code(vq) if out_proj: emb = self.out_project(emb) return emb def tokenize(self, z: torch.Tensor) -> torch.Tensor: """tokenize the input tensor""" z_e = self.in_project(z) _, indices, _ = self.decode_latents(z_e) return indices def detokenize(self, indices): """detokenize the input indices""" z_q = self.decode_code(indices) z_q = self.out_project(z_q) return z_q def get_emb(self): return self.codebook.weight def embed_code(self, embed_id): return F.embedding(embed_id, self.codebook.weight) def decode_code(self, embed_id): return self.embed_code(embed_id).transpose(1, 2) def decode_latents(self, latents): encodings = rearrange(latents, "b d t -> (b t) d") codebook = self.codebook.weight # L2 normalize encodings and codebook encodings = F.normalize(encodings) codebook = F.normalize(codebook) # Compute euclidean distance between encodings and codebook, # with L2 normalization, the distance is equal to cosine distance dist = ( encodings.pow(2).sum(1, keepdim=True) - 2 * encodings @ codebook.t() + codebook.pow(2).sum(1, keepdim=True).t() ) indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0)) z_q = self.decode_code(indices) return z_q, indices, dist # ============================================================================= # >> END: PASTE CODE FROM sparktts/modules/* HERE << # ============================================================================= # ============================================================================= # >> START: PASTE CODE FROM sparktts/models/bicodec.py HERE << # ============================================================================= # IMPORTANT: The BiCodec class definition needs to be here. # Modify its loading mechanism as suggested. class BiCodec(nn.Module): def __init__( self, mel_params: Dict[str, Any], encoder: nn.Module, decoder: nn.Module, quantizer: nn.Module, speaker_encoder: nn.Module, prenet: nn.Module, postnet: nn.Module, **kwargs ) -> None: super().__init__() self.encoder = encoder self.decoder = decoder self.quantizer = quantizer self.speaker_encoder = speaker_encoder self.prenet = prenet self.postnet = postnet self.init_mel_transformer(mel_params) @classmethod def load_from_config_and_checkpoint(cls, model_dir: Path, bicodec_config_object: SparkTTSBiCodecConfig) -> "BiCodec": """ Loads the BiCodec model using a SparkTTSBiCodecConfig object and a checkpoint file. Args: model_dir (Path): Path to the directory containing the model checkpoint ('model.safetensors'). bicodec_config_object (SparkTTSBiCodecConfig): The nested config object from SparkTTSConfig. Returns: BiCodec: The initialized BiCodec model. """ ckpt_path = model_dir / 'model.safetensors' if not ckpt_path.exists(): ckpt_path_bin = model_dir / 'pytorch_model.bin' if ckpt_path_bin.exists(): ckpt_path = ckpt_path_bin else: raise FileNotFoundError(f"BiCodec checkpoint not found at {model_dir / 'model.safetensors'} or potential fallbacks.") # Instantiate components using specific attributes from the nested config objects mel_params_config = bicodec_config_object.mel_params encoder_cfg = bicodec_config_object.encoder_config decoder_cfg = bicodec_config_object.decoder_config # WaveGenerator config quantizer_cfg = bicodec_config_object.quantizer_config speaker_encoder_cfg = bicodec_config_object.speaker_encoder_config prenet_cfg = bicodec_config_object.prenet_config postnet_cfg = bicodec_config_object.postnet_config # Pass only the arguments expected by each module's __init__ mel_params = mel_params_config.to_dict() # Mel params might be needed as dict encoder = Encoder( input_channels=encoder_cfg.input_channels, vocos_dim=encoder_cfg.vocos_dim, vocos_intermediate_dim=encoder_cfg.vocos_intermediate_dim, vocos_num_layers=encoder_cfg.vocos_num_layers, out_channels=encoder_cfg.out_channels, sample_ratios=encoder_cfg.sample_ratios, ) quantizer = FactorizedVectorQuantize( input_dim=quantizer_cfg.input_dim, codebook_size=quantizer_cfg.codebook_size, codebook_dim=quantizer_cfg.codebook_dim, commitment=quantizer_cfg.commitment, codebook_loss_weight=quantizer_cfg.codebook_loss_weight, decay=quantizer_cfg.decay, threshold_ema_dead_code=quantizer_cfg.threshold_ema_dead_code, # Add any other kwargs FactorizedVectorQuantize expects from its config ) prenet = Decoder( # Assuming Prenet uses the Decoder class structure input_channels=prenet_cfg.input_channels, vocos_dim=prenet_cfg.vocos_dim, vocos_intermediate_dim=prenet_cfg.vocos_intermediate_dim, vocos_num_layers=prenet_cfg.vocos_num_layers, out_channels=prenet_cfg.out_channels, condition_dim=prenet_cfg.condition_dim, sample_ratios=prenet_cfg.sample_ratios, use_tanh_at_final=prenet_cfg.use_tanh_at_final, ) postnet = Decoder( # Assuming Postnet uses the Decoder class structure input_channels=postnet_cfg.input_channels, vocos_dim=postnet_cfg.vocos_dim, vocos_intermediate_dim=postnet_cfg.vocos_intermediate_dim, vocos_num_layers=postnet_cfg.vocos_num_layers, out_channels=postnet_cfg.out_channels, # condition_dim=postnet_cfg.condition_dim, # Postnet might not have condition_dim # sample_ratios=postnet_cfg.sample_ratios, # Postnet might not have sample_ratios use_tanh_at_final=postnet_cfg.use_tanh_at_final, ) decoder = WaveGenerator( # This is the actual audio decoder input_channel=decoder_cfg.input_channel, channels=decoder_cfg.channels, rates=decoder_cfg.rates, kernel_sizes=decoder_cfg.kernel_sizes, # d_out is likely fixed to 1 internally in WaveGenerator, not configured ) speaker_encoder = SpeakerEncoder( input_dim=speaker_encoder_cfg.input_dim, out_dim=speaker_encoder_cfg.out_dim, latent_dim=speaker_encoder_cfg.latent_dim, token_num=speaker_encoder_cfg.token_num, fsq_levels=speaker_encoder_cfg.fsq_levels, fsq_num_quantizers=speaker_encoder_cfg.fsq_num_quantizers, ) # Instantiate the BiCodec model itself model = cls( mel_params=mel_params, # Pass the dict here encoder=encoder, decoder=decoder, quantizer=quantizer, speaker_encoder=speaker_encoder, prenet=prenet, postnet=postnet, ) # --- State Dict Loading --- logger.info(f"Loading BiCodec state dict from: {ckpt_path}") if str(ckpt_path).endswith(".safetensors"): state_dict = load_file(ckpt_path, device="cpu") # Load to CPU first else: state_dict = torch.load(ckpt_path, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) if missing_keys: logger.warning(f"BiCodec Missing keys: {missing_keys}") if unexpected_keys: logger.warning(f"BiCodec Unexpected keys: {unexpected_keys}") model.eval() model.remove_weight_norm() # Important step from original code logger.info("BiCodec loaded successfully.") return model # # # --- Paste the rest of the BiCodec methods here --- # # forward, tokenize, detokenize, init_mel_transformer, remove_weight_norm def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: """ Performs a forward pass through the model. Args: batch (dict): A dictionary containing features, reference waveform, and target waveform. Returns: dict: A dictionary containing the reconstruction, features, and other metrics. """ feat = batch["feat"] mel = self.mel_transformer(batch["ref_wav"]).squeeze(1) z = self.encoder(feat.transpose(1, 2)) vq_outputs = self.quantizer(z) x_vector, d_vector = self.speaker_encoder(mel.transpose(1, 2)) conditions = d_vector with_speaker_loss = False x = self.prenet(vq_outputs["z_q"], conditions) pred_feat = self.postnet(x) x = x + conditions.unsqueeze(-1) wav_recon = self.decoder(x) return { "vq_loss": vq_outputs["vq_loss"], "perplexity": vq_outputs["perplexity"], "cluster_size": vq_outputs["active_num"], "recons": wav_recon, "pred_feat": pred_feat, "x_vector": x_vector, "d_vector": d_vector, "audios": batch["wav"].unsqueeze(1), "with_speaker_loss": with_speaker_loss, } @torch.no_grad() def tokenize(self, batch: Dict[str, Any]): """ Tokenizes the input audio into semantic and global tokens. Args: batch (dict): The input audio features and reference waveform. Returns: tuple: Semantic tokens and global tokens. """ feat = batch["feat"] mel = self.mel_transformer(batch["ref_wav"]).squeeze(1) z = self.encoder(feat.transpose(1, 2)) semantic_tokens = self.quantizer.tokenize(z) global_tokens = self.speaker_encoder.tokenize(mel.transpose(1, 2)) return semantic_tokens, global_tokens @torch.no_grad() def detokenize(self, semantic_tokens, global_tokens): """ Detokenizes the semantic and global tokens into a waveform. Args: semantic_tokens (tensor): Semantic tokens. global_tokens (tensor): Global tokens. Returns: tensor: Reconstructed waveform. """ z_q = self.quantizer.detokenize(semantic_tokens) d_vector = self.speaker_encoder.detokenize(global_tokens) x = self.prenet(z_q, d_vector) x = x + d_vector.unsqueeze(-1) wav_recon = self.decoder(x) return wav_recon def init_mel_transformer(self, config: Dict[str, Any]): """ Initializes the MelSpectrogram transformer based on the provided configuration. Args: config (dict): Configuration parameters for MelSpectrogram. """ import torchaudio.transforms as TT self.mel_transformer = TT.MelSpectrogram( config["sample_rate"], config["n_fft"], config["win_length"], config["hop_length"], config["mel_fmin"], config["mel_fmax"], n_mels=config["num_mels"], power=1, norm="slaney", mel_scale="slaney", ) def remove_weight_norm(self): """Removes weight normalization from all layers.""" def _remove_weight_norm(m): try: torch.nn.utils.remove_weight_norm(m) except ValueError: pass # The module didn't have weight norm self.apply(_remove_weight_norm) # ============================================================================= # >> END: PASTE CODE FROM sparktts/models/bicodec.py HERE << # ============================================================================= # ============================================================================= # >> START: PASTE CODE FROM sparktts/utils/audio.py HERE (if needed by model) << # ============================================================================= # Functions like audio_volume_normalize, load_audio, etc., are typically part # of the Processor. However, if any are directly used *within* the BiCodec or # other model components pasted above, they need to be defined here too. # It seems `get_ref_clip` logic might be needed if `BiCodecTokenizer` logic is embedded. # Example placeholder comment: def audio_volume_normalize(audio: np.ndarray, coeff: float = 0.2) -> np.ndarray: """ Normalize the volume of an audio signal. Parameters: audio (numpy array): Input audio signal array. coeff (float): Target coefficient for normalization, default is 0.2. Returns: numpy array: The volume-normalized audio signal. """ # Sort the absolute values of the audio signal temp = np.sort(np.abs(audio)) # If the maximum value is less than 0.1, scale the array to have a maximum of 0.1 if temp[-1] < 0.1: scaling_factor = max( temp[-1], 1e-3 ) # Prevent division by zero with a small constant audio = audio / scaling_factor * 0.1 # Filter out values less than 0.01 from temp temp = temp[temp > 0.01] L = temp.shape[0] # Length of the filtered array # If there are fewer than or equal to 10 significant values, return the audio without further processing if L <= 10: return audio # Compute the average of the top 10% to 1% of values in temp volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)]) # Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10 audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10) # Ensure the maximum absolute value in the audio does not exceed 1 max_value = np.max(np.abs(audio)) if max_value > 1: audio = audio / max_value return audio def load_audio( adfile: Path, sampling_rate: int = None, length: int = None, volume_normalize: bool = False, segment_duration: int = None, ) -> np.ndarray: r"""Load audio file with target sampling rate and lsength Args: adfile (Path): path to audio file. sampling_rate (int, optional): target sampling rate. Defaults to None. length (int, optional): target audio length. Defaults to None. volume_normalize (bool, optional): whether perform volume normalization. Defaults to False. segment_duration (int): random select a segment with duration of {segment_duration}s. Defualt to None which means the whole audio will be used. Returns: audio (np.ndarray): audio """ audio, sr = soundfile.read(adfile) if len(audio.shape) > 1: audio = audio[:, 0] if sampling_rate is not None and sr != sampling_rate: audio = soxr.resample(audio, sr, sampling_rate, quality="VHQ") sr = sampling_rate if segment_duration is not None: seg_length = int(sr * segment_duration) audio = random_select_audio_segment(audio, seg_length) # Audio volume normalize if volume_normalize: audio = audio_volume_normalize(audio) # check the audio length if length is not None: assert abs(audio.shape[0] - length) < 1000 if audio.shape[0] > length: audio = audio[:length] else: audio = np.pad(audio, (0, int(length - audio.shape[0]))) return audio def random_select_audio_segment(audio: np.ndarray, length: int) -> np.ndarray: """get an audio segment given the length Args: audio (np.ndarray): length (int): audio length = sampling_rate * duration """ if audio.shape[0] < length: audio = np.pad(audio, (0, int(length - audio.shape[0]))) start_index = random.randint(0, audio.shape[0] - length) end_index = int(start_index + length) return audio[start_index:end_index] # ============================================================================= # >> END: PASTE CODE FROM sparktts/utils/audio.py HERE (if needed by model) << # ============================================================================= class SparkTTSModel(PreTrainedModel, GenerationMixin): """ Spark-TTS model integrating a Language Model (LLM) for sequence generation, a Wav2Vec2 model for feature extraction, and a BiCodec model for audio tokenization and synthesis. Designed for compatibility with the Hugging Face ecosystem. """ config_class = SparkTTSConfig base_model_prefix = "spark_tts" # Or perhaps "llm" if generation focuses there main_input_name = "input_ids" # Crucial for GenerationMixin def __init__( self, config: SparkTTSConfig, llm: Optional[PreTrainedModel] = None, wav2vec2_model: Optional[PreTrainedModel] = None, wav2vec2_processor: Optional[Wav2Vec2FeatureExtractor] = None, # Store processor too bicodec: Optional[nn.Module] = None, # Should be the loaded BiCodec instance ): super().__init__(config) self.config = config # Stores the main SparkTTSConfig # Store the sub-components self.llm = llm self.wav2vec2_model = wav2vec2_model self.wav2vec2_processor = wav2vec2_processor # Store the processor used for features self.bicodec = bicodec # Ensure Wav2Vec2 is configured for hidden states needed by BiCodec's feature extractor if self.wav2vec2_model: self.wav2vec2_model.config.output_hidden_states = True # Post initialization checks (optional but good practice) if not all([self.llm, self.wav2vec2_model, self.wav2vec2_processor, self.bicodec]): logger.warning( "SparkTTSModel initialized without all sub-components. " "Ensure `from_pretrained` is used for loading a complete model." ) def get_input_embeddings(self): """Returns the input embeddings of the LLM.""" if self.llm: return self.llm.get_input_embeddings() return None def set_input_embeddings(self, value): """Sets the input embeddings of the LLM.""" if self.llm: self.llm.set_input_embeddings(value) def _prepare_wav2vec2_features(self, wav: torch.Tensor) -> torch.Tensor: """ Extracts Wav2Vec2 features required by BiCodec. Input wav should be a batch of waveforms [B, T_audio]. """ if not self.wav2vec2_model or not self.wav2vec2_processor: raise ValueError("Wav2Vec2 model or processor not loaded.") # Get target device and dtype from the Wav2Vec2 model target_device = self.wav2vec2_model.device target_dtype = self.wav2vec2_model.dtype # Get the model's dtype (e.g., bfloat16) # Input wav tensor might be float32, processor usually expects float32 wav_for_processor = wav.to(device=target_device, dtype=torch.float32) # Process using the Wav2Vec2FeatureExtractor # The processor typically outputs float32 inputs = self.wav2vec2_processor( wav_for_processor, sampling_rate=self.config.sample_rate, # Use config SR return_tensors="pt", padding=True, ) input_values = inputs.input_values.to(target_device) # Move to device # --- Cast the input_values to the model's expected dtype --- input_values = input_values.to(dtype=target_dtype) # ---------------------------------------------------------- # --- CRITICAL CHECK AND FIX --- # Ensure input_values is 2D [Batch, Length] before passing to the model if input_values.ndim == 3 and input_values.shape[1] == 1: logger.warning(f"Processor returned 3D input_values {input_values.shape}. Squeezing the channel dimension.") input_values = input_values.squeeze(1) elif input_values.ndim != 2: raise ValueError(f"Expected input_values from processor to be 2D [Batch, Length], but got shape {input_values.shape}") # --- END CHECK AND FIX --- # Extract features using the Wav2Vec2Model with torch.no_grad(): # Feature extraction should not require gradients here # Now the input dtype matches the model's parameter dtype feat_outputs = self.wav2vec2_model(input_values) # Combine specific hidden states as per original BiCodecTokenizer logic if not feat_outputs.hidden_states: raise ValueError("Wav2Vec2 model did not return hidden states. Ensure config.output_hidden_states=True.") if len(feat_outputs.hidden_states) < 17: # Wav2Vec2-large-xlsr has 24 layers + initial embeddings = 25 states logger.warning(f"Wav2Vec2 model returned {len(feat_outputs.hidden_states)} hidden states. Expected at least 17 for default BiCodec indices (11, 14, 16). Check model architecture or BiCodec indices if this is unexpected.") # Attempt to proceed if possible, otherwise raise error if indices are out of bounds idx1, idx2, idx3 = 11, 14, 16 if not (0 <= idx1 < len(feat_outputs.hidden_states) and \ 0 <= idx2 < len(feat_outputs.hidden_states) and \ 0 <= idx3 < len(feat_outputs.hidden_states)): raise ValueError(f"Required hidden state indices ({idx1}, {idx2}, {idx3}) are out of bounds for the {len(feat_outputs.hidden_states)} hidden states returned.") else: idx1, idx2, idx3 = 11, 14, 16 feats_mix = ( feat_outputs.hidden_states[idx1] + feat_outputs.hidden_states[idx2] + feat_outputs.hidden_states[idx3] ) / 3 # Ensure the output features also match the expected downstream dtype (e.g., bicodec) # Usually okay if subsequent layers also use the same target_dtype return feats_mix.to(dtype=target_dtype) # Return features in the target dtype # Shape: [B, T_feats, D_feats] @torch.no_grad() def tokenize_audio(self, wav: torch.Tensor, ref_wav: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Tokenizes audio using the BiCodec model. Args: wav (torch.Tensor): The main audio waveform [B, T_audio]. (Should be float32 initially) ref_wav (torch.Tensor): The reference audio waveform [B, T_ref_audio]. (Should be float32 initially) Returns: Tuple[torch.Tensor, torch.Tensor]: global_tokens, semantic_tokens """ if not self.bicodec: raise ValueError("BiCodec model not loaded.") # 1. Extract Wav2Vec2 features for the main audio # _prepare_wav2vec2_features now handles internal dtype casting for w2v model feats = self._prepare_wav2vec2_features(wav) # Returns features in model's target dtype # 2. Prepare batch for BiCodec # Ensure tensors are on the BiCodec's device AND correct dtype # Get device and dtype from a BiCodec submodule parameter bicodec_param = next(self.bicodec.parameters()) target_device = bicodec_param.device target_dtype = bicodec_param.dtype # Get BiCodec's dtype batch = { # Cast inputs to BiCodec's expected dtype "wav": wav.to(device=target_device, dtype=target_dtype), "ref_wav": ref_wav.to(device=target_device, dtype=target_dtype), "feat": feats.to(device=target_device, dtype=target_dtype), # Ensure feats are also correct dtype } # 3. Call BiCodec's tokenize method semantic_tokens, global_tokens = self.bicodec.tokenize(batch) return global_tokens, semantic_tokens @torch.no_grad() def detokenize_audio(self, global_tokens: torch.Tensor, semantic_tokens: torch.Tensor) -> np.ndarray: """ Detokenizes audio tokens back to a waveform using BiCodec. Args: global_tokens (torch.Tensor): Global tokens [B, ...]. semantic_tokens (torch.Tensor): Semantic tokens [B, ...]. Returns: np.ndarray: The reconstructed waveform [T_audio_out] if B=1, or [B, T_audio_out] if B > 1, with dtype float32 and values clipped to [-1, 1]. """ if not self.bicodec: raise ValueError("BiCodec model not loaded.") target_device = next(self.bicodec.parameters()).device # Adjust shapes as expected by BiCodec.detokenize if needed if global_tokens.ndim == 2: # Example adjustment global_tokens = global_tokens.unsqueeze(1) logger.debug(f"DEBUG: Detokenizing audio with global tokens {global_tokens.shape}, semantic tokens {semantic_tokens.shape}") wav_rec = self.bicodec.detokenize( semantic_tokens.to(target_device), global_tokens.to(target_device) ) # Output tensor likely float32 or model's dtype # Convert to numpy, ensure float32, clip wav_rec_np = wav_rec.detach().cpu().numpy().astype(np.float32) # Ensure float32 wav_rec_np = np.clip(wav_rec_np, -1.0, 1.0) # Clip values logger.debug(f"DEBUG: Wav rec shape after detach and clip: {wav_rec_np.shape}") # Shape is likely (B, C, T) e.g., (1, 1, 24640) # ============================================================== # CORRECTED SQUEEZE LOGIC # ============================================================== # Remove all dimensions of size 1 (batch and channel if they are 1) # This handles both B=1, C=1 -> (T,) and potentially B>1, C=1 -> (B, T) # If C > 1, it would return (B, C, T) or (C, T) if B=1. # soundfile handles (T,) and (T, C) correctly. output_wav = wav_rec_np.squeeze() # ============================================================== logger.debug(f"DEBUG: Final output wav shape after squeeze: {output_wav.shape}") # Ensure the output is at least 1D even if squeeze removes everything (e.g., single sample output) if output_wav.ndim == 0: output_wav = np.expand_dims(output_wav, axis=0) return output_wav def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[list] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs ) -> dict: """ Prepares inputs for the generation process (standard method for GenerationMixin). """ # Add position_ids and handle past_key_values for causal LM generation # This is a standard implementation for causal LMs. if past_key_values: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "position_ids": position_ids, # Add any other inputs the LLM's forward method expects } def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, # Add other potential inputs for the LLM (position_ids, past_key_values, etc.) position_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: """ The forward pass primarily delegates to the underlying LLM. It takes tokenized text/audio prompts as input_ids. """ if not self.llm: raise ValueError("LLM component not loaded.") return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Pass arguments directly to the LLM's forward method outputs = self.llm( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs # Should be CausalLMOutputWithPast or tuple @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, ignore_mismatched_sizes: bool = False, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[bool, str]] = None, revision: str = "main", use_safetensors: Optional[bool] = None, # New args from base class signature to pass down if relevant state_dict = None, device_map = None, low_cpu_mem_usage = None, torch_dtype = "auto", quantization_config = None, trust_remote_code = None, # Add other relevant args from base class if needed: subfolder, variant, etc. subfolder: str = "", # Keep subfolder arg for overall loading logic variant: Optional[str] = None, **kwargs, ): # --- Argument Handling & Initial Setup --- if device_map: logger.warning("`device_map` is not directly supported for this composite model. Use .to(device) after loading.") if low_cpu_mem_usage: logger.info("`low_cpu_mem_usage` is set, but simplified loading is used. Memory usage might not be optimized.") if trust_remote_code is None: logger.warning("Loading SparkTTSModel requires custom code. Setting `trust_remote_code=True`.") trust_remote_code = True elif not trust_remote_code: raise ValueError("Loading SparkTTSModel requires `trust_remote_code=True`.") kwargs.pop("output_loading_info", None) kwargs.pop("_from_auto", None) kwargs.pop("attn_implementation", None) # --- 1. Resolve the main model directory --- if state_dict is not None: raise ValueError("Explicitly passing `state_dict` is not supported for this composite model.") if pretrained_model_name_or_path is None: raise ValueError("`pretrained_model_name_or_path` must be provided.") is_local = Path(pretrained_model_name_or_path).is_dir() if local_files_only and not is_local: raise ValueError(f"Cannot find local directory at {pretrained_model_name_or_path} when `local_files_only=True`.") if is_local: resolved_model_path = Path(pretrained_model_name_or_path) logger.info(f"Loading model from local directory: {resolved_model_path}") else: logger.info(f"{pretrained_model_name_or_path} is not a local directory. Assuming Hub ID and downloading.") try: # Use snapshot_download to get all necessary files # REMOVED subfolder=subfolder from this call resolved_model_path_str = snapshot_download( repo_id=str(pretrained_model_name_or_path), cache_dir=cache_dir, force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, allow_patterns=[ "*.json", "*.safetensors", "*.bin", "*.yaml", "*.txt", "README.md", ".gitattributes", "LLM/*", "BiCodec/*", "wav2vec2-large-xlsr-53/*" ], ignore_patterns=["*.git*", "*.h5", "*.ot", "*.msgpack"], repo_type="model", # Explicitly set repo_type # max_workers=..., # Can adjust workers if needed # user_agent=..., # Can add user agent ) resolved_model_path = Path(resolved_model_path_str) logger.info(f"Model files downloaded to cache: {resolved_model_path}") except Exception as e: # Catch potential TypeErrors from snapshot_download if args change again if isinstance(e, TypeError) and 'unexpected keyword argument' in str(e): logger.error(f"snapshot_download() received an unexpected keyword argument. Check huggingface_hub version compatibility. Error: {e}") raise OSError( f"Failed to download model '{pretrained_model_name_or_path}' (revision: '{revision}') from Hugging Face Hub. " f"Error: {e}" ) if not resolved_model_path.is_dir(): raise EnvironmentError(f"Resolved model path is not a directory: {resolved_model_path}") # If subfolder was specified for from_pretrained, adjust the path *after* download if subfolder: resolved_model_path_with_subfolder = resolved_model_path / subfolder if not resolved_model_path_with_subfolder.is_dir(): raise EnvironmentError(f"Subfolder '{subfolder}' not found within the resolved path: {resolved_model_path}") resolved_model_path = resolved_model_path_with_subfolder # Update path to include subfolder logger.info(f"Using subfolder within resolved path: {resolved_model_path}") # --- 2. Load the main configuration --- if not isinstance(config, PretrainedConfig): # Load config from the potentially subfolder-adjusted path config_path = config if config is not None else resolved_model_path try: loaded_config, model_kwargs = SparkTTSConfig.from_pretrained( config_path, # Load from the final resolved path *model_args, cache_dir=cache_dir, force_download=force_download if not is_local else False, local_files_only=local_files_only or is_local, token=token, revision=revision, # Pass revision for config loading too trust_remote_code=trust_remote_code, subfolder="", # Config is expected at the root of resolved_model_path return_unused_kwargs=True, **kwargs, ) config = loaded_config kwargs = model_kwargs except OSError as e: raise OSError(f"Cannot load config from {config_path}. Check `config.json` exists and is correctly formatted. Error: {e}") # --- Determine final torch_dtype --- final_torch_dtype = torch_dtype if final_torch_dtype == "auto": final_torch_dtype = getattr(config, "torch_dtype", None) if isinstance(final_torch_dtype, str) and final_torch_dtype != "auto": try: final_torch_dtype = getattr(torch, final_torch_dtype) except AttributeError: logger.warning(f"Invalid torch_dtype string: {final_torch_dtype}. Falling back to default.") final_torch_dtype = None elif final_torch_dtype == "auto": final_torch_dtype = None # --- Helper function to resolve component paths relative to the final resolved_model_path --- def _resolve_sub_path(sub_path_str): p = Path(sub_path_str) if p.is_absolute(): if not p.exists(): logger.warning(f"Absolute path specified for sub-component does not exist: {p}") return str(p) else: # Resolve relative to the potentially subfolder-adjusted main model path resolved = resolved_model_path / p if not resolved.exists(): resolved_alt = resolved_model_path / sub_path_str.lstrip('./') if resolved_alt.exists(): resolved = resolved_alt else: raise FileNotFoundError(f"Could not resolve sub-component path: {resolved} (relative to {resolved_model_path})") return str(resolved) # --- Component Loading Arguments --- component_loading_kwargs = { "cache_dir": cache_dir, "force_download": force_download, "local_files_only": local_files_only, "token": token, "revision": revision, # Pass revision to component loaders "trust_remote_code": trust_remote_code, "torch_dtype": final_torch_dtype, "use_safetensors": use_safetensors, "quantization_config": quantization_config if quantization_config else None, "variant": variant, **kwargs, # Pass remaining kwargs } # --- 3. Load Sub-components --- # (LLM, Wav2Vec2, BiCodec loading logic remains the same as previous version) # --- Load LLM --- llm_path = _resolve_sub_path(config.llm_model_name_or_path) logger.info(f"Loading LLM from resolved path: {llm_path}") try: # Pass subfolder="" because llm_path is now absolute or correctly relative llm = AutoModelForCausalLM.from_pretrained( llm_path, subfolder="", **component_loading_kwargs ) except Exception as e: raise OSError(f"Failed to load LLM from {llm_path}: {e}") # --- Load Wav2Vec2 --- w2v_path = _resolve_sub_path(config.wav2vec2_model_name_or_path) logger.info(f"Loading Wav2Vec2 components from resolved path: {w2v_path}") try: # Load extractor without full component_loading_kwargs if they cause issues wav2vec2_processor = Wav2Vec2FeatureExtractor.from_pretrained( w2v_path, cache_dir=cache_dir, force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, subfolder="", # Path is resolved ) # Load model with full kwargs wav2vec2_model = Wav2Vec2Model.from_pretrained( w2v_path, subfolder="", **component_loading_kwargs ) wav2vec2_model.config.output_hidden_states = True except Exception as e: raise OSError(f"Failed to load Wav2Vec2 components from {w2v_path}: {e}") # --- Load BiCodec --- bicodec_path = _resolve_sub_path(config.bicodec_model_name_or_path) logger.info(f"Loading BiCodec from resolved path: {bicodec_path}") if not config.bicodec_config: raise ValueError("BiCodec configuration (`bicodec_config`) not found in SparkTTSConfig.") try: bicodec = BiCodec.load_from_config_and_checkpoint( model_dir=Path(bicodec_path), bicodec_config_object=config.bicodec_config ) if not isinstance(bicodec, torch.nn.Module): logger.warning("Loaded BiCodec component is not an instance of torch.nn.Module.") if isinstance(bicodec, torch.nn.Module) and final_torch_dtype: bicodec = bicodec.to(dtype=final_torch_dtype) except FileNotFoundError as e: raise OSError(f"Failed to load BiCodec: Required file not found in {bicodec_path}. Error: {e}") except Exception as e: logger.error(f"Raw error loading BiCodec: {type(e).__name__}: {e}") import traceback traceback.print_exc() raise OSError(f"Failed to load BiCodec from {bicodec_path}. Error: {e}") # --- 4. Instantiate the main model wrapper --- model = cls( config, llm=llm, wav2vec2_model=wav2vec2_model, wav2vec2_processor=wav2vec2_processor, bicodec=bicodec ) # --- 5. Handle device placement (Simplified) --- if torch.cuda.is_available(): final_device = torch.device("cuda") elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): final_device = torch.device("mps") else: final_device = torch.device("cpu") logger.info(f"Placing SparkTTSModel and components on device: {final_device}") try: model.to(final_device) except Exception as e: logger.error(f"Failed to move model to device {final_device}. Error: {e}") # --- 6. Return the loaded and prepared model --- return model