Models-coll / script /0hx51x.py
DmitrMakeev's picture
Create script/0hx51x.py
1beb2ae
raw
history blame
13.3 kB
import os
import platform
import numpy as np
from tqdm import trange
import math
import subprocess as sp
import string
import random
from functools import reduce
import re
import modules.scripts as scripts
import gradio as gr
from modules import processing, shared, sd_samplers, images
from modules.processing import Processed
from modules.sd_samplers import samplers
from modules.shared import opts, cmd_opts, state
import subprocess
wave_completed_regex = r'@wave_completed\(([\-]?[0-9]*\.?[0-9]+), ?([\-]?[0-9]*\.?[0-9]+)\)'
wave_remaining_regex = r'@wave_remaining\(([\-]?[0-9]*\.?[0-9]+), ?([\-]?[0-9]*\.?[0-9]+)\)'
def run_cmd(cmd):
cmd = list(map(lambda arg: str(arg), cmd))
print("Executing %s" % " ".join(cmd))
popen_params = {"stdout": sp.DEVNULL, "stderr": sp.PIPE, "stdin": sp.DEVNULL}
if os.name == "nt":
popen_params["creationflags"] = 0x08000000
proc = sp.Popen(cmd, **popen_params)
out, err = proc.communicate() # proc.wait()
proc.stderr.close()
if proc.returncode:
raise IOError(err.decode("utf8"))
del proc
def encode_video(input_pattern, starting_number, output_dir, fps, quality, encoding, create_segments, segment_duration, ffmpeg_path):
two_pass = (encoding == "VP9 (webm)")
alpha_channel = ("webm" in encoding)
suffix = "webm" if "webm" in encoding else "mp4"
output_location = output_dir + f".{suffix}"
encoding_lib = {
"VP9 (webm)": "libvpx-vp9",
"VP8 (webm)": "libvpx",
"H.264 (mp4)": "libx264",
"H.265 (mp4)": "libx265",
}[encoding]
args = [
"-framerate", fps,
"-start_number", int(starting_number),
"-i", input_pattern,
"-c:v", encoding_lib,
"-b:v","0",
"-crf", quality,
]
if encoding_lib == "libvpx-vp9":
args += ["-pix_fmt", "yuva420p"]
if(ffmpeg_path == ""):
ffmpeg_path = "ffmpeg"
if(platform.system == "Windows"):
ffmpeg_path += ".exe"
print("\n\n")
if two_pass:
first_pass_args = args + [
"-pass", "1",
"-an",
"-f", "null",
os.devnull
]
second_pass_args = args + [
"-pass", "2",
output_location
]
print("Running first pass ffmpeg encoding")
run_cmd([ffmpeg_path] + first_pass_args)
print("Running second pass ffmpeg encoding. This could take awhile...")
run_cmd([ffmpeg_path] + second_pass_args)
else:
print("Running ffmpeg encoding. This could take awhile...")
run_cmd([ffmpeg_path] + args + [output_location])
if(create_segments):
print("Segmenting video")
run_cmd([ffmpeg_path] + [
"-i", output_location,
"-f", "segment",
"-segment_time", segment_duration,
"-vcodec", "copy",
"-acodec", "copy",
f"{output_dir}.%d.{suffix}"
])
def set_weights(match_obj, wave_progress):
weight_0 = 0
weight_1 = 0
if match_obj.group(1) is not None:
weight_0 = float(match_obj.group(1))
if match_obj.group(2) is not None:
weight_1 = float(match_obj.group(2))
max_weight = max(weight_0, weight_1)
min_weight = min(weight_0, weight_1)
weight_range = max_weight - min_weight
weight = min_weight + weight_range * wave_progress
return str(weight)
class Script(scripts.Script):
def title(self):
return "Loopback Wave V1.4.1"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
frames = gr.Slider(minimum=1, maximum=2048, step=1, label='Frames', value=100)
frames_per_wave = gr.Slider(minimum=0, maximum=120, step=1, label='Frames Per Wave', value=20)
denoising_strength_change_amplitude = gr.Slider(minimum=0, maximum=1, step=0.01, label='Max additional denoise', value=0.6)
denoising_strength_change_offset = gr.Number(minimum=0, maximum=180, step=1, label='Wave offset (ignore this if you don\'t know what it means)', value=0)
initial_image_number = gr.Number(minimum=0, label='Initial generated image number', value=0)
save_prompts = gr.Checkbox(label='Save prompts as text file', value=True)
prompts = gr.Textbox(label="Prompt Changes", lines=5, value="")
save_video = gr.Checkbox(label='Save results as video', value=True)
output_dir = gr.Textbox(label="Video Name", lines=1, value="")
video_fps = gr.Slider(minimum=1, maximum=120, step=1, label='Frames per second', value=10)
video_quality = gr.Slider(minimum=0, maximum=60, step=1, label='Video Quality (crf)', value=40)
video_encoding = gr.Dropdown(label='Video encoding', value="VP9 (webm)", choices=["VP9 (webm)", "VP8 (webm)", "H.265 (mp4)", "H.264 (mp4)"])
ffmpeg_path = gr.Textbox(label="ffmpeg binary. Only set this if it fails otherwise.", lines=1, value="")
segment_video = gr.Checkbox(label='Cut video in to segments', value=True)
video_segment_duration = gr.Slider(minimum=10, maximum=60, step=1, label='Video Segment Duration (seconds)', value=20)
return [frames, denoising_strength_change_amplitude, frames_per_wave, denoising_strength_change_offset,initial_image_number, prompts, save_prompts, save_video, output_dir, video_fps, video_quality, video_encoding, ffmpeg_path, segment_video, video_segment_duration]
def run(self, p, frames, denoising_strength_change_amplitude, frames_per_wave, denoising_strength_change_offset, initial_image_number, prompts: str,save_prompts, save_video, output_dir, video_fps, video_quality, video_encoding, ffmpeg_path, segment_video, video_segment_duration):
processing.fix_seed(p)
batch_count = p.n_iter
p.extra_generation_params = {
"Max Additional Denoise": denoising_strength_change_amplitude,
"Frames per wave": frames_per_wave,
"Wave Offset": denoising_strength_change_offset,
}
# We save them ourselves for the sake of ffmpeg
p.do_not_save_samples = True
changes_dict = {}
p.batch_size = 1
p.n_iter = 1
output_images, info = None, None
initial_seed = None
initial_info = None
grids = []
all_images = []
original_init_image = p.init_images
state.job_count = frames * batch_count
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
initial_denoising_strength = p.denoising_strength
if(output_dir==""):
output_dir = str(p.seed)
else:
output_dir = output_dir + "-" + str(p.seed)
loopback_wave_path = os.path.join(p.outpath_samples, "loopback-wave")
loopback_wave_images_path = os.path.join(loopback_wave_path, output_dir)
os.makedirs(loopback_wave_images_path, exist_ok=True)
p.outpath_samples = loopback_wave_images_path
prompts = prompts.strip()
if save_prompts:
with open(loopback_wave_images_path + "-prompts.txt", "w") as f:
generation_settings = [
"Generation Settings",
f"Total Frames: {frames}",
f"Frames Per Wave: {frames_per_wave}",
f"Wave Offset: {denoising_strength_change_offset}",
f"Base Denoising Strength: {initial_denoising_strength}",
f"Max Additional Denoise: {denoising_strength_change_amplitude}",
f"Initial Image Number: {initial_image_number}",
"",
"Video Encoding Settings",
f"Save Video: {save_video}"
]
if save_video:
generation_settings = generation_settings + [
f"Framerate: {video_fps}",
f"Quality: {video_quality}",
f"Encoding: {video_encoding}",
f"Create Segmented Video: {segment_video}"
]
if segment_video:
generation_settings = generation_settings + [f"Segment Duration: {video_segment_duration}"]
generation_settings = generation_settings + [
"",
"Prompt Details",
"Initial Prompt:" + p.prompt,
"",
"Negative Prompt:" + p.negative_prompt,
"",
"Frame change prompts:",
prompts
]
f.write('\n'.join(generation_settings))
if prompts:
lines = prompts.split("\n")
for prompt_line in lines:
params = prompt_line.split("::")
if len(params) == 2:
changes_dict[params[0]] = { "prompt": params[1] }
elif len(params) == 3:
changes_dict[params[0]] = { "seed": params[1], "prompt": params[2] }
else:
raise IOError(f"Invalid input in prompt line: {prompt_line}")
raw_prompt = p.prompt
for n in range(batch_count):
history = []
# Reset to original init image at the start of each batch
p.init_images = original_init_image
seed_state = "adding"
current_seed = p.seed
for i in range(frames):
current_seed = p.seed
state.job = ""
if str(i) in changes_dict:
raw_prompt = changes_dict[str(i)]["prompt"]
state.job = "New prompt: %s\n" % raw_prompt
if "seed" in changes_dict[str(i)]:
current_seed = changes_dict[str(i)]["seed"]
if current_seed.startswith("+"):
seed_state = "adding"
current_seed = current_seed.strip("+")
elif current_seed.startswith("-"):
seed_state = "subtracting"
current_seed = current_seed.strip("-")
else:
seed_state = "constant"
current_seed = int(current_seed)
p.seed = current_seed
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
wave_progress = float(1)/(float(frames_per_wave - 1))*float(((float(i)%float(frames_per_wave)) + ((float(1)/float(180))*denoising_strength_change_offset)))
print(wave_progress)
new_prompt = re.sub(wave_completed_regex, lambda x: set_weights(x, wave_progress), raw_prompt)
new_prompt = re.sub(wave_remaining_regex, lambda x: set_weights(x, 1 - wave_progress), new_prompt)
p.prompt = new_prompt
print(new_prompt)
denoising_strength_change_rate = 180/frames_per_wave
cos = abs(math.cos(math.radians(i*denoising_strength_change_rate + denoising_strength_change_offset)))
p.denoising_strength = initial_denoising_strength + denoising_strength_change_amplitude - (cos * denoising_strength_change_amplitude)
state.job += f"Iteration {i + 1}/{frames}, batch {n + 1}/{batch_count}. Denoising Strength: {p.denoising_strength}"
processed = processing.process_images(p)
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
init_img = processed.images[0]
p.init_images = [init_img]
if seed_state == "adding":
p.seed = processed.seed + 1
elif seed_state == "subtracting":
p.seed = processed.seed - 1
image_number = int(initial_image_number + i)
images.save_image(init_img, p.outpath_samples, "", processed.seed, processed.prompt, forced_filename=str(image_number))
history.append(init_img)
grid = images.image_grid(history, rows=1)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
grids.append(grid)
all_images += history
if opts.return_grid:
all_images = grids + all_images
if save_video:
input_pattern = os.path.join(loopback_wave_images_path, "%d.png")
encode_video(input_pattern, initial_image_number, loopback_wave_images_path, video_fps, video_quality, video_encoding, segment_video, video_segment_duration, ffmpeg_path)
processed = Processed(p, all_images, initial_seed, initial_info)
return processed