Dizex commited on
Commit
4a2e4c8
1 Parent(s): 70ed9f8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - Dizex/InstaFoodSet
5
+ widget:
6
+ - text: "Today's meal: Fresh olive poké bowl topped with chia seeds. Very delicious!"
7
+ example_title: "Food example 1"
8
+ - text: "Tartufo Pasta with garlic flavoured butter and olive oil, egg yolk, parmigiano and pasta water."
9
+ example_title: "Food example 2"
10
+ tags:
11
+ - Instagram
12
+ - NER
13
+ - Named Entity Recognition
14
+ - Food Entity Extraction
15
+ license: mit
16
+ ---
17
+ # InstaFoodBERT
18
+
19
+ ## Model description
20
+
21
+ **InstaFoodBERT** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** of Food entities on informal text (like social media). It has been trained to recognize a single entity: food (FOOD).
22
+
23
+ Specifically, this model is a *bert-base-cased* model that was fine-tuned on a dataset consisting of 400 English Instagram posts related to food. The [dataset](https://huggingface.co/datasets/Dizex/InstaFoodSet) is open source.
24
+
25
+
26
+ ## Intended uses
27
+
28
+ #### How to use
29
+
30
+ You can use this model with Transformers *pipeline* for NER.
31
+
32
+ ```python
33
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
34
+ from transformers import pipeline
35
+
36
+ tokenizer = AutoTokenizer.from_pretrained("Dizex/InstaFoodBERT")
37
+ model = AutoModelForTokenClassification.from_pretrained("Dizex/InstaFoodBERT")
38
+
39
+ pipe = pipeline("ner", model=model, tokenizer=tokenizer)
40
+ example = "Today's meal: Fresh olive poké bowl topped with chia seeds. Very delicious!"
41
+
42
+ ner_entity_results = pipe(example)
43
+ print(ner_entity_results)
44
+ ```