|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Frozen11-8epoch-BERT-multilingual-finetuned-CEFR_ner-3000news |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Frozen11-8epoch-BERT-multilingual-finetuned-CEFR_ner-3000news |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6206 |
|
- Accuracy: 0.3654 |
|
- Precision: 0.5146 |
|
- Recall: 0.5208 |
|
- F1: 0.4022 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 132 | 0.6667 | 0.3546 | 0.5202 | 0.4775 | 0.3676 | |
|
| No log | 2.0 | 264 | 0.6564 | 0.3574 | 0.5171 | 0.4956 | 0.3796 | |
|
| No log | 3.0 | 396 | 0.6472 | 0.3599 | 0.5112 | 0.4998 | 0.3840 | |
|
| 0.6062 | 4.0 | 528 | 0.6354 | 0.3622 | 0.5107 | 0.5109 | 0.3927 | |
|
| 0.6062 | 5.0 | 660 | 0.6282 | 0.3641 | 0.5198 | 0.5115 | 0.3962 | |
|
| 0.6062 | 6.0 | 792 | 0.6254 | 0.3647 | 0.5192 | 0.5176 | 0.3988 | |
|
| 0.6062 | 7.0 | 924 | 0.6212 | 0.3653 | 0.5156 | 0.5224 | 0.4040 | |
|
| 0.5499 | 8.0 | 1056 | 0.6206 | 0.3654 | 0.5146 | 0.5208 | 0.4022 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|