DioBot2000's picture
End of training
d9c57c6 verified
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: FULL-12epoch-XLMRoBERTa-finetuned-CEFR_ner-60000news
    results: []

FULL-12epoch-XLMRoBERTa-finetuned-CEFR_ner-60000news

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0687
  • Accuracy: 0.3222
  • Precision: 0.6358
  • Recall: 0.8475
  • F1: 0.6074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.087 1.0 1563 0.0917 0.3188 0.7203 0.8273 0.6562
0.08 2.0 3126 0.0747 0.3204 0.7147 0.8331 0.6569
0.0666 3.0 4689 0.0691 0.3211 0.7195 0.8376 0.6624
0.0583 4.0 6252 0.0667 0.3213 0.6889 0.8419 0.6433
0.0514 5.0 7815 0.0650 0.3216 0.7043 0.8433 0.6543
0.0463 6.0 9378 0.0642 0.3219 0.6780 0.8444 0.6362
0.0421 7.0 10941 0.0635 0.3220 0.6759 0.8458 0.6354
0.0385 8.0 12504 0.0644 0.3220 0.6330 0.8470 0.6066
0.0358 9.0 14067 0.0670 0.3221 0.6368 0.8467 0.6068
0.0331 10.0 15630 0.0676 0.3222 0.6442 0.8468 0.6130
0.0309 11.0 17193 0.0680 0.3222 0.6377 0.8472 0.6092
0.0298 12.0 18756 0.0687 0.3222 0.6358 0.8475 0.6074

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1
  • Datasets 2.19.2
  • Tokenizers 0.19.1