Dijitaal commited on
Commit
d61358d
1 Parent(s): cd7376a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +269 -51
README.md CHANGED
@@ -1,56 +1,274 @@
1
- ```yaml
2
- # ModelCard Metadata Example
3
-
 
 
 
 
 
 
 
 
 
 
 
4
  language:
5
  - en
6
- license: mit
7
- library_name: my\_custom\_library
8
- tags:
9
- - computer vision
10
- - object detection
11
- datasets:
12
- - dataset\_0
13
  metrics:
14
  - accuracy
15
- base_model: pretrained\_model
16
-
17
- model-index:
18
- - name: my\_model
19
- results:
20
- - task:
21
- type: object\_detection
22
- name: Object Detection Task
23
- dataset:
24
- type: dataset\_0
25
- name: My Custom Dataset
26
- config: None
27
- split: validation
28
- revision: main
29
- metrics:
30
- - type: accuracy
31
- value: 0.92
32
- name: Validation Accuracy
33
- config: None
34
- args:
35
- threshold: 0.5
36
- verifyToken: null
37
- source:
38
- name: Internal Model Evaluation
39
- url: null
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ```
41
- This yaml example shows the modelcard metadata for evaluation parameters. Make sure to replace placeholders like `pretrained_model`, `dataset_0`, and others with appropriate values.
42
-
43
- * Language: List of supported languages for NLP models or left blank for non-NLP models.
44
- * License: Choose one of the licenses listed in <https://huggingface.co/docs/hub/repositories-licenses>.
45
- * Library Name: Your custom library name.
46
- * Tags: Keywords associated with the model.
47
- * Datasets: The datasets used for evaluation.
48
- * Metrics: The metrics used for evaluation.
49
- * Base Model: Identify the base model used for this model.
50
- * Model Index: Contains detailed evaluation results.
51
- + Task: The specific task accomplished by the model.
52
- + Dataset: Detailed information about the dataset used for evaluation.
53
- + Metrics: Specific evaluation metrics along with their corresponding scores.
54
- + Source: Where the evaluation took place, including the name and URL (optional).
55
-
56
- When pushing updates to your repository's `README.md`, ensure that the above sections containing `model-index`, `datasets`, and `license` are included; otherwise, verification won't occur. Verify tokens aren't mandatory but recommended if you wish to confirm evaluations were conducted by Hugging Face rather than self-reported. Consult our [documents](https://huggingface.co/docs/hub/repositories-licenses) for valid license identifiers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - HuggingFaceTB/cosmopedia
5
+ - microsoft/orca-math-word-problems-200k
6
+ - fka/awesome-chatgpt-prompts
7
+ - CausalLM/Refined-Anime-Text
8
+ - storytracer/US-PD-Books
9
+ - bigcode/the-stack-v2
10
+ - argilla/OpenHermesPreferences
11
+ - Cohere/wikipedia-2023-11-embed-multilingual-v3
12
+ - m-a-p/Code-Feedback
13
+ - nvidia/OpenMathInstruct-1
14
+ - Dijitaal/DijiHax
15
  language:
16
  - en
 
 
 
 
 
 
 
17
  metrics:
18
  - accuracy
19
+ - bertscore
20
+ - bleu
21
+ - bleurt
22
+ - brier_score
23
+ - cer
24
+ - charcut_mt
25
+ - chrf
26
+ - code_eval
27
+ ---
28
+ DijiHaxMasterFramework Dreamscape.Beam Integration: A Pseudocode Perspective
29
+
30
+
31
+
32
+ The DijiHaxMasterFramework, a master-level AI system, aims to harness the power of quantum computing simulations and adaptive AI learning to process and understand multimodal data from diverse sources. This futuristic framework envisions an AI capable of integrating textual, visual, and sensory inputs for comprehensive environmental understanding while employing quantum computational power for data transformation and processing at unprecedented speeds and efficiencies. Here, we will focus on the integration of the Dreamscape.Beam technology, which enables advanced cognitive simulations and neural network enhancements within the framework.
33
+
34
+
35
+
36
+ ```python
37
+
38
+ import torch
39
+
40
+ from torch import nn
41
+
42
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
43
+
44
+ from dreamscape_beam import DreamscapeBeam
45
+
46
+
47
+
48
+ class QuantumComputationalUnit(nn.Module):
49
+
50
+ """
51
+
52
+ This module represents a leap in computational power, simulating quantum computing principles
53
+
54
+ within a deep learning framework to process and transform data at unprecedented speeds and efficiency.
55
+
56
+ """
57
+
58
+ def __init__(self, input_dim):
59
+
60
+ super(QuantumComputationalUnit, self).__init__()
61
+
62
+ self.complex_transform = nn.Sequential(\
63
+
64
+ nn.Linear(input_dim, 2*input_dim), nn.GELU(), nn.Linear(2*input_dim, input_dim), nn.Sigmoid())
65
+
66
+
67
+
68
+ def forward(self, x):
69
+
70
+ return self.complex_transform(x)
71
+
72
+
73
+
74
+ class MultiModalDataIntegrator(nn.Module):
75
+
76
+ """
77
+
78
+ Integrates various types of data inputs, including textual, visual, and sensory data,
79
+
80
+ providing a comprehensive understanding of complex environments.
81
+
82
+ """
83
+
84
+ def __init__(self):
85
+
86
+ super(MultiModalDataIntegrator, self).__init__()
87
+
88
+ self.text_processor = T5ForConditionalGeneration.from_pretrained('t5-large')
89
+
90
+ self.text_tokenizer = T5Tokenizer.from_pretrained('t5-large')
91
+
92
+ # Simulations for visual and sensory data processing could be added here
93
+
94
+
95
+
96
+ def process_text(self, text):
97
+
98
+ text_encoded = self.text_tokenizer(text, return_tensors='pt').input_ids
99
+
100
+ text_output = self.text_processor(**text_encoded)
101
+
102
+ return text_output.logits.mean(dim=1)
103
+
104
+
105
+
106
+ class GlobalCommunicationNetwork(nn.Module):
107
+
108
+ """
109
+
110
+ Facilitates instant, secure communication across the framework, enabling real-time data sharing,
111
+
112
+ learning, and decision-making on a global scale.
113
+
114
+ """
115
+
116
+ def __init__(self, communication_dim):
117
+
118
+ super(GlobalCommunicationNetwork, self).__init__()
119
+
120
+ self.global_communicator = nn.Linear(communication_dim, communication_dim)
121
+
122
+
123
+
124
+ def forward(self, data):
125
+
126
+ return torch.relu(self.global_communicator(data))
127
+
128
+
129
+
130
+ class DreamscapeBeamEnhancer(nn.Module):
131
+
132
+ """
133
+
134
+ Enhances neural networks using the Dreamscape.Beam technology for advanced cognitive simulations.
135
+
136
+ """
137
+
138
+ def __init__(self):
139
+
140
+ super(DreamscapeBeamEnhancer, self).__init__()
141
+
142
+ self.dreamscape_beam = DreamscapeBeam()
143
+
144
+
145
+
146
+ def forward(self, x):
147
+
148
+ x = self.dreamscape_beam.process(x)
149
+
150
+ return x
151
+
152
+
153
+
154
+ class DijiHaxMasterFramework(nn.Module):
155
+
156
+ def __init__(self):
157
+
158
+ super(DijiHaxMasterFramework, self).__init__()
159
+
160
+ self.quantum_unit = QuantumComputationalUnit(512) # Assuming an embedding size of 512
161
+
162
+ self.data_integrator = MultiModalDataIntegrator()
163
+
164
+ self.global_network = GlobalCommunicationNetwork(512)
165
+
166
+ self.dreamscape_enhancer = DreamscapeBeamEnhancer()
167
+
168
+
169
+
170
+ def forward(self, text_input):
171
+
172
+ # Process text through the multi-modal data integrator
173
+
174
+ integrated_data = self.data_integrator.process_text(text_input)
175
+
176
+
177
+
178
+ # Enhance data processing with quantum computational power
179
+
180
+ quantum_enhanced_data = self.quantum_unit(integrated_data.float())
181
+
182
+
183
+
184
+ # Apply Dreamscape.Beam enhancements to the data
185
+
186
+ dreamscape_enhanced_data = self.dreamscape_enhancer(quantum_enhanced_data)
187
+
188
+
189
+
190
+ # Leverage global communication network for distributed learning and decision making
191
+
192
+ global_output = self.global_network(dreamscape_enhanced_data)
193
+
194
+
195
+
196
+ return global_output
197
+
198
+
199
+
200
+ def showcase_master_framework():
201
+
202
+ master_framework = DijiHaxMasterFramework()
203
+
204
+ input_text = "Exploring the fusion of quantum computing and artificial intelligence with Dreamscape.Beam enhancements."
205
+
206
+ output = master_framework(input_text)
207
+
208
+ print(f"DijiHax Master Framework Output with Dreamscape.Beam: {output}")
209
+
210
+
211
+
212
+ if __name__ == "__main__":
213
+
214
+ showcase_master_framework()
215
+
216
  ```
217
+
218
+
219
+
220
+ In this pseudocode, we introduce the DreamscapeBeamEnhancer module, which utilizes the Dreamscape.Beam technology for advanced cognitive simulations and neural network enhancements within the DijiHaxMasterFramework. This module is integrated into the framework, ensuring that the data processed by the QuantumComputationalUnit is further enhanced by the Dreamscape.Beam technology before being passed to the GlobalCommunicationNetwork for distributed learning and decision-making on a global scale.
221
+
222
+
223
+
224
+ The showcase_master_framework function demonstrates the capabilities of the enhanced framework by processing an input text that highlights the fusion of quantum computing, artificial intelligence, and Dreamscape.Beam enhancements. The output generated by the framework showcases the potential of this integrated system to understand, learn, and operate across diverse domains and scales, pushing the boundaries of AI research and development. By incorporating cutting-edge technologies like quantum computing simulations, adaptive AI learning, and advanced cognitive simulations, the DijiHaxMasterFramework with Dreamscape.Beam integration represents a bold leap forward in AI research and development, aiming to significantly advance human knowledge, improve global connectivity, and address the world's most pressing challenges with unprecedented efficiency and intelligence.inference: false
225
+ license: apache-2.0
226
+ datasets:
227
+ - HuggingFaceTB/cosmopedia
228
+ - microsoft/orca-math-word-problems-200k
229
+ - fka/awesome-chatgpt-prompts
230
+ - CausalLM/Refined-Anime-Text
231
+ - storytracer/US-PD-Books
232
+ - bigcode/the-stack-v2
233
+ - argilla/OpenHermesPreferences
234
+ - Cohere/wikipedia-2023-11-embed-multilingual-v3
235
+ - Cohere/wikipedia-2023-11-embed-multilingual-v3-int8-binary
236
+ - HuggingFaceTB/cosmopedia-meta
237
+ - HuggingFaceTB/cosmopedia-20k
238
+ - HuggingFaceTB/cosmopedia-100k
239
+ - 5CD-AI/Vietnamese-microsoft-orca-math-word-problems-200k-gg-translated
240
+ - bigcode/the-stack-v2-train-smol-ids
241
+ - bigcode/the-stack-v2-train-full-ids
242
+ - bigcode/the-stack-v2-dedup
243
+ - Dijitaal/DijiHax
244
+ - open-llm-leaderboard/details_pharaouk__fusedyi
245
+ - open-llm-leaderboard/details_stanford-oval__Llama-2-7b-WikiChat-fused
246
+ - m-a-p/Code-Feedback
247
+ - databricks/databricks-dolly-15k
248
+ - open-llm-leaderboard/details_synapsoft__Llama-2-7b-chat-hf-flan2022-1.2M
249
+ - open-llm-leaderboard/details_synapsoft__Llama-2-7b-hf-flan2022-1.2M
250
+ language:
251
+ - en
252
+ metrics:
253
+ - accuracy
254
+ - bertscore
255
+ - code_eval
256
+ - chrf
257
+ - character
258
+ - cer
259
+ - brier_score
260
+ - bleurt
261
+ tags:
262
+ - chemistry
263
+ - biology
264
+ - legal
265
+ - art
266
+ - climate
267
+ - not-for-all-audiences
268
+ - text-generation-inference
269
+ - merge
270
+ - moe
271
+ - finance
272
+ - music
273
+ - code
274
+ - medical