Qwen-Image-Blockwise-ControlNet-Depth / README_from_modelscope.md
kelseye's picture
Upload folder using huggingface_hub
d91410a verified
|
raw
history blame
2.99 kB
metadata
frameworks:
  - Pytorch
license: Apache License 2.0
tasks:
  - text-to-image-synthesis
base_model:
  - Qwen/Qwen-Image
base_model_relation: adapter

Qwen-Image 图像结构控制模型 - Depth ControlNet

模型介绍

本模型是基于 Qwen-Image 训练的图像结构控制模型,模型结构为 ControlNet,可根据深度(Depth)图控制生成的图像结构。训练框架基于 DiffSynth-Studio 构建,采用的数据集是 BLIP3o

效果展示

结构图 生成图1 生成图2

推理代码

git clone https://github.com/modelscope/DiffSynth-Studio.git  
cd DiffSynth-Studio
pip install -e .
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput
from PIL import Image
import torch
from modelscope import dataset_snapshot_download


pipe = QwenImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
        ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth", origin_file_pattern="model.safetensors"),
    ],
    tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)

dataset_snapshot_download(
    dataset_id="DiffSynth-Studio/example_image_dataset",
    local_dir="./data/example_image_dataset",
    allow_file_pattern="depth/image_1.jpg"
)

controlnet_image = Image.open("data/example_image_dataset/depth/image_1.jpg").resize((1328, 1328))

prompt = "精致肖像,水下少女,蓝裙飘逸,发丝轻扬,光影透澈,气泡环绕,面容恬静,细节精致,梦幻唯美。"
image = pipe(
    prompt, seed=0,
    blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)]
)
image.save("image.jpg")