AttriCtrl-FLUX.1-Dev / README_from_modelscope.md
kelseye's picture
Upload folder using huggingface_hub
334a6cc verified
metadata
frameworks:
  - Pytorch
license: Apache License 2.0
tasks:
  - text-to-image-synthesis

AttriCtrl 数值型生图控制模型

简介

AttriCtrl 可以实现数值型图像指标的生图控制。

更多细节请参考我们的论文: AttriCtrl: Fine-Grained Control of Aesthetic Attribute Intensity in Diffusion Models

效果展示

亮度(Brightness)

scale = 0.1 scale = 0.3 scale = 0.5 scale = 0.7 scale = 0.9

细节(Detail)

scale = 0.1 scale = 0.3 scale = 0.5 scale = 0.7 scale = 0.9

摄影感(Realism)

scale = 0.1 scale = 0.3 scale = 0.5 scale = 0.7 scale = 0.9

推理代码

git clone https://github.com/modelscope/DiffSynth-Studio.git  
cd DiffSynth-Studio
pip install -e .
import torch
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig


pipe = FluxImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"),
        ModelConfig(model_id="DiffSynth-Studio/AttriCtrl-FLUX.1-Dev", origin_file_pattern="models/detail.safetensors")
    ],
)

for i in [0.1, 0.3, 0.5, 0.7, 0.9]:
    image = pipe(prompt="a cat on the beach", seed=2, value_controller_inputs=[i])
    image.save(f"value_control_{i}.jpg")