Dfbenavidesr
commited on
Commit
•
613d916
1
Parent(s):
d9bbec3
Upload Train.ipynb
Browse filesEn este notebook encontrará la rutina de finetuning del modelo original
- Train.ipynb +1347 -0
Train.ipynb
ADDED
@@ -0,0 +1,1347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "GZiMfnKVCniS"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# PROYECTO III PROGRAMA DE FORMACIÓN MLDS AVANZADO\n",
|
10 |
+
"## Daniel F. Benavides R. \n",
|
11 |
+
"## Módulo VI - Entrenamiento de modelo de red neuronal y disposición del mismo a nivel local. \n",
|
12 |
+
"\n",
|
13 |
+
"### OBJETIVO\n",
|
14 |
+
"\n",
|
15 |
+
"El objetivo de este proyecto es realizar el despliegue de un modelo a nivel local. El mismo se llevará a cabo en dos partes: La primera en la cual se realiza el entrenamiento del modelo. El mismo se guarda a nivel local para su posterior uso. \n",
|
16 |
+
"\n",
|
17 |
+
"Es así como a continuación se ve el ejercicio de fine-tuning del modelo preentrenado de transformers [_'distilbert-base-uncased'_](https://huggingface.co/distilbert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France.). Este modelo inicialmente fue entrenado para labores de _fill mask_ y se adaptará como modelo clasificación de **SMS** no deseado. \n"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 33,
|
23 |
+
"metadata": {
|
24 |
+
"colab": {
|
25 |
+
"base_uri": "https://localhost:8080/"
|
26 |
+
},
|
27 |
+
"id": "gTYjO-PJIUT-",
|
28 |
+
"outputId": "27f1d993-d34f-4f4b-bbe1-ab6c96bc2825"
|
29 |
+
},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"output_type": "stream",
|
33 |
+
"name": "stdout",
|
34 |
+
"text": [
|
35 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"from google.colab import drive\n",
|
41 |
+
"drive.mount('/content/drive')"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "markdown",
|
46 |
+
"metadata": {
|
47 |
+
"id": "GRFpQTqzDCLT"
|
48 |
+
},
|
49 |
+
"source": [
|
50 |
+
"### Carga y manipulación de los datos \n",
|
51 |
+
"\n",
|
52 |
+
"A continuación importamos pandas, por medio del cual hacemos el respectivo cargue del dataset, delimitamos por el espacio la etiqueta del mensaje.\n",
|
53 |
+
"\n",
|
54 |
+
"Luego por medio de la función _list_ convertimos el mensaje y las etiquetas en un par de listas. luego convertimos las etiquetas en una variable dummie, debido a que tenemos una salida binaria _(el mensaje es spam o no lo es)_\n",
|
55 |
+
"\n",
|
56 |
+
"## Importamos el dataset de entrenamiento"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 34,
|
62 |
+
"metadata": {
|
63 |
+
"colab": {
|
64 |
+
"base_uri": "https://localhost:8080/"
|
65 |
+
},
|
66 |
+
"id": "3Dt9fFKs74zR",
|
67 |
+
"outputId": "271ff620-a449-4e87-a163-14621651b48e"
|
68 |
+
},
|
69 |
+
"outputs": [
|
70 |
+
{
|
71 |
+
"output_type": "stream",
|
72 |
+
"name": "stdout",
|
73 |
+
"text": [
|
74 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
|
75 |
+
]
|
76 |
+
}
|
77 |
+
],
|
78 |
+
"source": [
|
79 |
+
"from google.colab import drive\n",
|
80 |
+
"drive.mount('/content/drive')\n",
|
81 |
+
"path= \"/content/drive/MyDrive/MLDS-2/MODULO II/Talleres/SMSSpamCollection\""
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 35,
|
87 |
+
"metadata": {
|
88 |
+
"id": "awPXefiYqQsF"
|
89 |
+
},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"\n",
|
93 |
+
"import pandas as pd\n",
|
94 |
+
"df=messages = pd.read_csv(path, sep='\\t',\n",
|
95 |
+
" names=[\"label\", \"message\"])\n",
|
96 |
+
"X=list(df['message'])\n",
|
97 |
+
"y=list(df['label'])\n",
|
98 |
+
"y=list(pd.get_dummies(y,drop_first=True)['spam'])\n"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "markdown",
|
103 |
+
"metadata": {
|
104 |
+
"id": "1T8CpN3YDar6"
|
105 |
+
},
|
106 |
+
"source": [
|
107 |
+
"### Preprocesamiento \n",
|
108 |
+
"\n",
|
109 |
+
"Ahora importamos la función *train_test_split* del módulo *model_selection* de la librería *scikit-learn* y por medio de este dividimos en set de entrenamiento y prueba. Definimos el tamaño de set de prueba en 20% de la muestra. También definimos el parámetro *random_state* para efectos de controlar la generación de los dos conjuntos de tal manera que no sean aleatorios. \n",
|
110 |
+
"\n",
|
111 |
+
"Luego instalamos la librería transformers, aunque en mi caso ya lo había realizado. \n"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 36,
|
117 |
+
"metadata": {
|
118 |
+
"id": "dLFDWda0rIKw"
|
119 |
+
},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"from sklearn.model_selection import train_test_split\n",
|
123 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 37,
|
129 |
+
"metadata": {
|
130 |
+
"colab": {
|
131 |
+
"base_uri": "https://localhost:8080/"
|
132 |
+
},
|
133 |
+
"id": "AqOBGiGErZgj",
|
134 |
+
"outputId": "1a461d33-55ae-4a22-9746-8c01e99d49bd"
|
135 |
+
},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"output_type": "stream",
|
139 |
+
"name": "stdout",
|
140 |
+
"text": [
|
141 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
142 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.8/dist-packages (4.25.1)\n",
|
143 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (21.3)\n",
|
144 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)\n",
|
145 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.10.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.11.1)\n",
|
146 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.8.2)\n",
|
147 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.23.0)\n",
|
148 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)\n",
|
149 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)\n",
|
150 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)\n",
|
151 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.13.2)\n",
|
152 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0,>=0.10.0->transformers) (4.4.0)\n",
|
153 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n",
|
154 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.12.7)\n",
|
155 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.24.3)\n",
|
156 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)\n",
|
157 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (3.0.4)\n"
|
158 |
+
]
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"source": [
|
162 |
+
"!pip install transformers"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "markdown",
|
167 |
+
"metadata": {
|
168 |
+
"id": "31aeQ6u-Dq-K"
|
169 |
+
},
|
170 |
+
"source": [
|
171 |
+
"Ahora debemos invocar los modelos de que vamos a utilizar de la librería transformers en los siguientes pasos: \n",
|
172 |
+
"\n",
|
173 |
+
"* Llamamos el modelo preentrenado\n",
|
174 |
+
"* Llamamos el tokenizador \n",
|
175 |
+
"\n",
|
176 |
+
"Necesitamos aplicar el tokenizador sobre nuestro conjunto de datos. \n",
|
177 |
+
"\n",
|
178 |
+
"Así que acontinuación llamamos de la librería transformers el tokenizador _\"DistilBertTokenizerFast\"_ luego lo definimos como nuestro **tokenizer** indicando que el mismo proviene del modelo preentrenado [_'distilbert-base-uncased'_](https://huggingface.co/distilbert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France.)"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": 38,
|
184 |
+
"metadata": {
|
185 |
+
"id": "bcNEJ6perOSs"
|
186 |
+
},
|
187 |
+
"outputs": [],
|
188 |
+
"source": [
|
189 |
+
"from transformers import DistilBertTokenizerFast\n",
|
190 |
+
"tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "markdown",
|
195 |
+
"metadata": {
|
196 |
+
"id": "3RdR0eZaDyyi"
|
197 |
+
},
|
198 |
+
"source": [
|
199 |
+
"Luego aplicamos el tokenizador que acabamos de definir sobre nuestro conjunto de mensajes de entrenamiento y prueba. Como los SMS no tienen la misma longitud (cantidad de tokens) debemos definir los parámetros truncation y padding como True para que se obtener oraciones del mismo tamaño; uno se encarga de rellenar de ceros (padding) y el otro de truncar las oraciones más largas. Esto para obtener un conjunto y luego tensores rectangulares. "
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 39,
|
205 |
+
"metadata": {
|
206 |
+
"id": "-OL3fgLvrXvH"
|
207 |
+
},
|
208 |
+
"outputs": [],
|
209 |
+
"source": [
|
210 |
+
"train_encodings = tokenizer(X_train, truncation=True, padding=True)\n",
|
211 |
+
"test_encodings = tokenizer(X_test, truncation=True, padding=True)\n"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "markdown",
|
216 |
+
"metadata": {
|
217 |
+
"id": "7JTdRQNVD4AK"
|
218 |
+
},
|
219 |
+
"source": [
|
220 |
+
"Ahora se procede a importar Tensorflow para efecto de convertir en tensores los encodings generados en el paso anterior. Acá se junta cada uno a su correspondiente etiqueta. "
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": 40,
|
226 |
+
"metadata": {
|
227 |
+
"id": "9B42CTCnrrEx"
|
228 |
+
},
|
229 |
+
"outputs": [],
|
230 |
+
"source": [
|
231 |
+
"import tensorflow as tf\n",
|
232 |
+
"\n",
|
233 |
+
"train_dataset = tf.data.Dataset.from_tensor_slices((\n",
|
234 |
+
" dict(train_encodings),\n",
|
235 |
+
" y_train\n",
|
236 |
+
"))\n",
|
237 |
+
"\n",
|
238 |
+
"test_dataset = tf.data.Dataset.from_tensor_slices((\n",
|
239 |
+
" dict(test_encodings),\n",
|
240 |
+
" y_test\n",
|
241 |
+
"))"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "markdown",
|
246 |
+
"metadata": {
|
247 |
+
"id": "G3Wj2cqXD5hx"
|
248 |
+
},
|
249 |
+
"source": [
|
250 |
+
"### Entrenamiento\n",
|
251 |
+
"\n",
|
252 |
+
"A continuación se importan los módulos de TFDistilBertForSequenceClassification que es usado para la tarea de clasificación de sentimientos. También se importan los módulos y *TFTrainingArguments* y *TFTrainer*que son los encargados de definir los argumentos y posteriormente parametrizar el **trainer** del modelo y hacer las nuevas predicciones. \n"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 41,
|
258 |
+
"metadata": {
|
259 |
+
"id": "NH1dupK0rzfn"
|
260 |
+
},
|
261 |
+
"outputs": [],
|
262 |
+
"source": [
|
263 |
+
"from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments\n",
|
264 |
+
"\n",
|
265 |
+
"training_args = TFTrainingArguments(\n",
|
266 |
+
" eval_steps = 10, \n",
|
267 |
+
" output_dir='./results', # output directory\n",
|
268 |
+
" num_train_epochs=2, # total number of training epochs\n",
|
269 |
+
" per_device_train_batch_size=8, # batch size per device during training\n",
|
270 |
+
" per_device_eval_batch_size=8, # batch size for evaluation\n",
|
271 |
+
" warmup_steps=500, # number of warmup steps for learning rate scheduler\n",
|
272 |
+
" weight_decay=0.01, # strength of weight decay\n",
|
273 |
+
" logging_dir='./logs', # directory for storing logs\n",
|
274 |
+
" logging_steps=10,\n",
|
275 |
+
")"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "markdown",
|
280 |
+
"metadata": {
|
281 |
+
"id": "cqmXOhkSEAgC"
|
282 |
+
},
|
283 |
+
"source": [
|
284 |
+
"Hemos determinado el conjunto de argumentos que serán utilizados en el reentrenamiento del modelo,estos quedan alojados en el objeto *training_args* y ahora definiremos el modelo refiriendo el modelo preentrenado que vamos a utilizar, que en este caso es _\"distilbert-base-uncased\"_. se creará el **trainer** al cual se le pasarán los argumentos antes definidos y los dos tensores de entrenamiento y prueba; para luego entrenar el modelo que hemos definido."
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"execution_count": 42,
|
290 |
+
"metadata": {
|
291 |
+
"colab": {
|
292 |
+
"base_uri": "https://localhost:8080/"
|
293 |
+
},
|
294 |
+
"id": "PZvTrEcfr7k-",
|
295 |
+
"outputId": "f8fe7e3c-c9c8-4b92-c3fc-ea4821386beb"
|
296 |
+
},
|
297 |
+
"outputs": [
|
298 |
+
{
|
299 |
+
"output_type": "stream",
|
300 |
+
"name": "stderr",
|
301 |
+
"text": [
|
302 |
+
"Some layers from the model checkpoint at distilbert-base-uncased were not used when initializing TFDistilBertForSequenceClassification: ['vocab_projector', 'activation_13', 'vocab_layer_norm', 'vocab_transform']\n",
|
303 |
+
"- This IS expected if you are initializing TFDistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
304 |
+
"- This IS NOT expected if you are initializing TFDistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
305 |
+
"Some layers of TFDistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['dropout_39', 'pre_classifier', 'classifier']\n",
|
306 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
307 |
+
"/usr/local/lib/python3.8/dist-packages/transformers/trainer_tf.py:115: FutureWarning: The class `TFTrainer` is deprecated and will be removed in version 5 of Transformers. We recommend using native Keras instead, by calling methods like `fit()` and `predict()` directly on the model object. Detailed examples of the Keras style can be found in our examples at https://github.com/huggingface/transformers/tree/main/examples/tensorflow\n",
|
308 |
+
" warnings.warn(\n"
|
309 |
+
]
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"source": [
|
313 |
+
"with training_args.strategy.scope():\n",
|
314 |
+
" model = TFDistilBertForSequenceClassification.from_pretrained(\"distilbert-base-uncased\")\n",
|
315 |
+
"\n",
|
316 |
+
"trainer = TFTrainer(\n",
|
317 |
+
" model=model, # the instantiated 🤗 Transformers model to be trained\n",
|
318 |
+
" args=training_args, # training arguments, defined above\n",
|
319 |
+
" train_dataset=train_dataset, # training dataset\n",
|
320 |
+
" eval_dataset=test_dataset # evaluation dataset\n",
|
321 |
+
")\n"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"cell_type": "markdown",
|
326 |
+
"metadata": {
|
327 |
+
"id": "tnAE3agZ21dq"
|
328 |
+
},
|
329 |
+
"source": [
|
330 |
+
"una vez instanciado el modelo que será reentrenado, parametrizados los argumentos para ello, se toma la data y se realiza el reentrenamiento del modelo. "
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": 43,
|
336 |
+
"metadata": {
|
337 |
+
"id": "bIba4vQg7Ecp"
|
338 |
+
},
|
339 |
+
"outputs": [],
|
340 |
+
"source": [
|
341 |
+
"trainer.train()"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "markdown",
|
346 |
+
"metadata": {
|
347 |
+
"id": "Zerz-bv8EENp"
|
348 |
+
},
|
349 |
+
"source": [
|
350 |
+
"Ahora solo queda por aplicar modelo que reentrenamos con el dataset de **entrenamiento**, hacer la predicción, y la evaluación de las predicciones. Este procedimiento se encuentra definido en el [manual de fine-tuning](https://huggingface.co/transformers/v3.5.1/training.html) que tiene Hugging Face disponible. "
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": 44,
|
356 |
+
"metadata": {
|
357 |
+
"colab": {
|
358 |
+
"base_uri": "https://localhost:8080/"
|
359 |
+
},
|
360 |
+
"id": "R534aDi3xD0s",
|
361 |
+
"outputId": "65c5ac93-eb67-4413-e048-f7b4d9fd8931"
|
362 |
+
},
|
363 |
+
"outputs": [
|
364 |
+
{
|
365 |
+
"output_type": "execute_result",
|
366 |
+
"data": {
|
367 |
+
"text/plain": [
|
368 |
+
"{'eval_loss': 0.02398163080215454}"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
"metadata": {},
|
372 |
+
"execution_count": 44
|
373 |
+
}
|
374 |
+
],
|
375 |
+
"source": [
|
376 |
+
"trainer.evaluate(test_dataset)"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "markdown",
|
381 |
+
"metadata": {
|
382 |
+
"id": "4rLF3nApUndt"
|
383 |
+
},
|
384 |
+
"source": [
|
385 |
+
"A continuación aplicamos el modelo reentrenado al set de prueba hacer la respectiva clasificación de cada una de las muestras. "
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "markdown",
|
390 |
+
"metadata": {
|
391 |
+
"id": "jpGNNvWEWU9u"
|
392 |
+
},
|
393 |
+
"source": [
|
394 |
+
"### Predicción del modelo\n",
|
395 |
+
"\n",
|
396 |
+
"Se aplica el modelo reentrenado al dataset de prueba *test_dataset* y se evalúa la precisión del mismo por medio del accuracy, es decir, acá le pasamos mensajes sin etiquetas y le pedimos que prediga si son o no spam. El modelo para la tarea que fue entrenado presenta un accuracy de 1, es decir clasifica perfectamente el set de prueba. "
|
397 |
+
]
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"cell_type": "code",
|
401 |
+
"execution_count": 45,
|
402 |
+
"metadata": {
|
403 |
+
"colab": {
|
404 |
+
"base_uri": "https://localhost:8080/"
|
405 |
+
},
|
406 |
+
"id": "UyBmI1WcxKjG",
|
407 |
+
"outputId": "53067a82-55bf-4500-a38e-d890be6f7bf5"
|
408 |
+
},
|
409 |
+
"outputs": [
|
410 |
+
{
|
411 |
+
"output_type": "execute_result",
|
412 |
+
"data": {
|
413 |
+
"text/plain": [
|
414 |
+
"PredictionOutput(predictions=array([[ 3.4155877, -3.1767924],\n",
|
415 |
+
" [-3.2374823, 3.135958 ],\n",
|
416 |
+
" [ 3.348417 , -3.1216612],\n",
|
417 |
+
" ...,\n",
|
418 |
+
" [ 3.04905 , -2.8354154],\n",
|
419 |
+
" [-3.1865208, 3.0687277],\n",
|
420 |
+
" [ 3.212608 , -3.0316095]], dtype=float32), label_ids=array([0, 1, 0, ..., 0, 1, 0], dtype=int32), metrics={'eval_loss': 0.023984665530068533})"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
"metadata": {},
|
424 |
+
"execution_count": 45
|
425 |
+
}
|
426 |
+
],
|
427 |
+
"source": [
|
428 |
+
"trainer.predict(test_dataset)"
|
429 |
+
]
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"cell_type": "code",
|
433 |
+
"execution_count": 46,
|
434 |
+
"metadata": {
|
435 |
+
"colab": {
|
436 |
+
"base_uri": "https://localhost:8080/"
|
437 |
+
},
|
438 |
+
"id": "9Qc5FtM8xn9A",
|
439 |
+
"outputId": "0d517424-b5d1-4324-be3c-6f90335aa4fd"
|
440 |
+
},
|
441 |
+
"outputs": [
|
442 |
+
{
|
443 |
+
"output_type": "execute_result",
|
444 |
+
"data": {
|
445 |
+
"text/plain": [
|
446 |
+
"(1115,)"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
"metadata": {},
|
450 |
+
"execution_count": 46
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"source": [
|
454 |
+
"trainer.predict(test_dataset)[1].shape"
|
455 |
+
]
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"cell_type": "markdown",
|
459 |
+
"metadata": {
|
460 |
+
"id": "LUHX_tCTWFuu"
|
461 |
+
},
|
462 |
+
"source": [
|
463 |
+
"#### Salidas"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"cell_type": "code",
|
468 |
+
"execution_count": 47,
|
469 |
+
"metadata": {
|
470 |
+
"colab": {
|
471 |
+
"base_uri": "https://localhost:8080/"
|
472 |
+
},
|
473 |
+
"id": "fUVX_IhWxkxg",
|
474 |
+
"outputId": "a2e94ee6-54a2-414f-c2e7-98950deb7732"
|
475 |
+
},
|
476 |
+
"outputs": [
|
477 |
+
{
|
478 |
+
"output_type": "execute_result",
|
479 |
+
"data": {
|
480 |
+
"text/plain": [
|
481 |
+
"array([0, 1, 0, ..., 0, 1, 0], dtype=int32)"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
"metadata": {},
|
485 |
+
"execution_count": 47
|
486 |
+
}
|
487 |
+
],
|
488 |
+
"source": [
|
489 |
+
"output=trainer.predict(test_dataset)[1]\n",
|
490 |
+
"output"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"cell_type": "markdown",
|
495 |
+
"metadata": {
|
496 |
+
"id": "lUxvb6JcYB7_"
|
497 |
+
},
|
498 |
+
"source": [
|
499 |
+
"#### Matriz de confusión, Accuracy"
|
500 |
+
]
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"cell_type": "code",
|
504 |
+
"execution_count": 48,
|
505 |
+
"metadata": {
|
506 |
+
"colab": {
|
507 |
+
"base_uri": "https://localhost:8080/"
|
508 |
+
},
|
509 |
+
"id": "cfCE06jQu5cI",
|
510 |
+
"outputId": "a1d10897-a36f-47a8-e038-0f68ec5e7ded"
|
511 |
+
},
|
512 |
+
"outputs": [
|
513 |
+
{
|
514 |
+
"output_type": "execute_result",
|
515 |
+
"data": {
|
516 |
+
"text/plain": [
|
517 |
+
"array([[955, 0],\n",
|
518 |
+
" [ 0, 160]])"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
"metadata": {},
|
522 |
+
"execution_count": 48
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"source": [
|
526 |
+
"from sklearn.metrics import confusion_matrix, accuracy_score\n",
|
527 |
+
"\n",
|
528 |
+
"confusion_matrix=confusion_matrix(y_test,output)\n",
|
529 |
+
"confusion_matrix\n"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 49,
|
535 |
+
"metadata": {
|
536 |
+
"colab": {
|
537 |
+
"base_uri": "https://localhost:8080/"
|
538 |
+
},
|
539 |
+
"id": "mv83DD8sl8JO",
|
540 |
+
"outputId": "97612c62-b15f-453f-d51e-5cd12e554421"
|
541 |
+
},
|
542 |
+
"outputs": [
|
543 |
+
{
|
544 |
+
"output_type": "execute_result",
|
545 |
+
"data": {
|
546 |
+
"text/plain": [
|
547 |
+
"1.0"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
"metadata": {},
|
551 |
+
"execution_count": 49
|
552 |
+
}
|
553 |
+
],
|
554 |
+
"source": [
|
555 |
+
"acc=accuracy_score(y_test,output)\n",
|
556 |
+
"acc"
|
557 |
+
]
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"cell_type": "markdown",
|
561 |
+
"metadata": {
|
562 |
+
"id": "Zm3mF58zYYze"
|
563 |
+
},
|
564 |
+
"source": [
|
565 |
+
"#### Descarga del modelo"
|
566 |
+
]
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"cell_type": "code",
|
570 |
+
"execution_count": 59,
|
571 |
+
"metadata": {
|
572 |
+
"id": "okD5we1NwhQW"
|
573 |
+
},
|
574 |
+
"outputs": [],
|
575 |
+
"source": [
|
576 |
+
"trainer.save_model('ft_model')\n",
|
577 |
+
"trainer.save_model('/content/drive/MyDrive/MLDS-2/MODULO III/Talleres/Modelo Entrenado')\n"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"source": [
|
583 |
+
"!pip install transformers"
|
584 |
+
],
|
585 |
+
"metadata": {
|
586 |
+
"colab": {
|
587 |
+
"base_uri": "https://localhost:8080/"
|
588 |
+
},
|
589 |
+
"id": "iuipIt7zN8Ct",
|
590 |
+
"outputId": "f078f829-8827-4e20-daed-9baf1e007394"
|
591 |
+
},
|
592 |
+
"execution_count": 60,
|
593 |
+
"outputs": [
|
594 |
+
{
|
595 |
+
"output_type": "stream",
|
596 |
+
"name": "stdout",
|
597 |
+
"text": [
|
598 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
599 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.8/dist-packages (4.25.1)\n",
|
600 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)\n",
|
601 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)\n",
|
602 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.10.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.11.1)\n",
|
603 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)\n",
|
604 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)\n",
|
605 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.13.2)\n",
|
606 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.8.2)\n",
|
607 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.23.0)\n",
|
608 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (21.3)\n",
|
609 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0,>=0.10.0->transformers) (4.4.0)\n",
|
610 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n",
|
611 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.24.3)\n",
|
612 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)\n",
|
613 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (3.0.4)\n",
|
614 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.12.7)\n"
|
615 |
+
]
|
616 |
+
}
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"cell_type": "code",
|
621 |
+
"source": [
|
622 |
+
"!pip install huggingface_hub"
|
623 |
+
],
|
624 |
+
"metadata": {
|
625 |
+
"colab": {
|
626 |
+
"base_uri": "https://localhost:8080/"
|
627 |
+
},
|
628 |
+
"id": "Oo5x6eVZN7_9",
|
629 |
+
"outputId": "21c914ea-8540-4192-e11d-f77d3774fef1"
|
630 |
+
},
|
631 |
+
"execution_count": 61,
|
632 |
+
"outputs": [
|
633 |
+
{
|
634 |
+
"output_type": "stream",
|
635 |
+
"name": "stdout",
|
636 |
+
"text": [
|
637 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
638 |
+
"Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.8/dist-packages (0.11.1)\n",
|
639 |
+
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.8/dist-packages (from huggingface_hub) (21.3)\n",
|
640 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface_hub) (3.8.2)\n",
|
641 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from huggingface_hub) (6.0)\n",
|
642 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface_hub) (4.4.0)\n",
|
643 |
+
"Requirement already satisfied: tqdm in /usr/local/lib/python3.8/dist-packages (from huggingface_hub) (4.64.1)\n",
|
644 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from huggingface_hub) (2.23.0)\n",
|
645 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.9->huggingface_hub) (3.0.9)\n",
|
646 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface_hub) (2.10)\n",
|
647 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface_hub) (3.0.4)\n",
|
648 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface_hub) (1.24.3)\n",
|
649 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface_hub) (2022.12.7)\n"
|
650 |
+
]
|
651 |
+
}
|
652 |
+
]
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"cell_type": "code",
|
656 |
+
"source": [
|
657 |
+
"import torch\n",
|
658 |
+
"from transformers import BertTokenizer, BertForSequenceClassification, TFDistilBertForSequenceClassification"
|
659 |
+
],
|
660 |
+
"metadata": {
|
661 |
+
"id": "XXn00BW7N79l"
|
662 |
+
},
|
663 |
+
"execution_count": 62,
|
664 |
+
"outputs": []
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"cell_type": "code",
|
668 |
+
"source": [
|
669 |
+
"model2 = TFDistilBertForSequenceClassification.from_pretrained('/content/drive/MyDrive/MLDS-2/MODULO III/Talleres/Modelo Entrenado/')\n"
|
670 |
+
],
|
671 |
+
"metadata": {
|
672 |
+
"colab": {
|
673 |
+
"base_uri": "https://localhost:8080/"
|
674 |
+
},
|
675 |
+
"id": "nnajL6gxN7zN",
|
676 |
+
"outputId": "a5477437-8a60-44f3-fa99-c83de5010cc6"
|
677 |
+
},
|
678 |
+
"execution_count": 63,
|
679 |
+
"outputs": [
|
680 |
+
{
|
681 |
+
"output_type": "stream",
|
682 |
+
"name": "stderr",
|
683 |
+
"text": [
|
684 |
+
"Some layers from the model checkpoint at /content/drive/MyDrive/MLDS-2/MODULO III/Talleres/Modelo Entrenado/ were not used when initializing TFDistilBertForSequenceClassification: ['dropout_39']\n",
|
685 |
+
"- This IS expected if you are initializing TFDistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
686 |
+
"- This IS NOT expected if you are initializing TFDistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
687 |
+
"Some layers of TFDistilBertForSequenceClassification were not initialized from the model checkpoint at /content/drive/MyDrive/MLDS-2/MODULO III/Talleres/Modelo Entrenado/ and are newly initialized: ['dropout_59']\n",
|
688 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
689 |
+
]
|
690 |
+
}
|
691 |
+
]
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"cell_type": "code",
|
695 |
+
"source": [
|
696 |
+
"from huggingface_hub import notebook_login\n",
|
697 |
+
"\n",
|
698 |
+
"notebook_login()\n"
|
699 |
+
],
|
700 |
+
"metadata": {
|
701 |
+
"colab": {
|
702 |
+
"base_uri": "https://localhost:8080/",
|
703 |
+
"height": 359,
|
704 |
+
"referenced_widgets": [
|
705 |
+
"eae418e551f44d90b53b67ab19f2681a",
|
706 |
+
"d339a1c63e24406faf2c231028ab0d7f",
|
707 |
+
"e4665b549c0f48698529d99f475e07ca",
|
708 |
+
"92b55d980482446da8d2aed8b58593ff",
|
709 |
+
"2dfe4e10862342918c0c151f3f719fef",
|
710 |
+
"5e73bccd9598457b856dd44741261ed3",
|
711 |
+
"cdc2b5d89c814b6ca8c2e7a30f17b1e2",
|
712 |
+
"d76091dbf8334024b4edf2ec9e5bf32d",
|
713 |
+
"f43c0faafc754458bce32f3eee55a153",
|
714 |
+
"ff5b269f82684bc9ab81c3caae7299ca",
|
715 |
+
"902f6a0765a0469ebd1994f789ad80e2",
|
716 |
+
"c14909df983c43aeb3f62b670c376b60",
|
717 |
+
"05e9de72aac143918ec0e31263075982",
|
718 |
+
"b92abd39e834458d95ed024468835ff4",
|
719 |
+
"46133dced4ec4122bbca398b70f4aadb",
|
720 |
+
"a026cfb4f04a4e5f95fc6d6dcf53b9e1",
|
721 |
+
"40af31601c0b4396bdf2da2d81ba1f1b"
|
722 |
+
]
|
723 |
+
},
|
724 |
+
"id": "smWmyyktyYKr",
|
725 |
+
"outputId": "7ae0dee8-eafb-4134-962e-f3ed0187f2c9"
|
726 |
+
},
|
727 |
+
"execution_count": 65,
|
728 |
+
"outputs": [
|
729 |
+
{
|
730 |
+
"output_type": "stream",
|
731 |
+
"name": "stdout",
|
732 |
+
"text": [
|
733 |
+
"Token is valid.\n",
|
734 |
+
"Your token has been saved in your configured git credential helpers (store).\n",
|
735 |
+
"Your token has been saved to /root/.huggingface/token\n",
|
736 |
+
"Login successful\n"
|
737 |
+
]
|
738 |
+
}
|
739 |
+
]
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"cell_type": "code",
|
743 |
+
"source": [
|
744 |
+
"model2.push_to_hub(\"Dfbenavidesr/distilbert-base-uncased-finetuned_clf-spam\")"
|
745 |
+
],
|
746 |
+
"metadata": {
|
747 |
+
"id": "1HTnPWjUTDCt"
|
748 |
+
},
|
749 |
+
"execution_count": 66,
|
750 |
+
"outputs": []
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"source": [
|
755 |
+
"model2 = TFDistilBertForSequenceClassification.from_pretrained(\"Dfbenavidesr/distilbert-base-uncased-finetuned_clf-spam\")"
|
756 |
+
],
|
757 |
+
"metadata": {
|
758 |
+
"colab": {
|
759 |
+
"base_uri": "https://localhost:8080/"
|
760 |
+
},
|
761 |
+
"id": "YNboOPrSTwe1",
|
762 |
+
"outputId": "7382c934-1760-41d8-dd80-3513fd37168c"
|
763 |
+
},
|
764 |
+
"execution_count": 70,
|
765 |
+
"outputs": [
|
766 |
+
{
|
767 |
+
"output_type": "stream",
|
768 |
+
"name": "stderr",
|
769 |
+
"text": [
|
770 |
+
"Some layers from the model checkpoint at Dfbenavidesr/distilbert-base-uncased-finetuned_clf-spam were not used when initializing TFDistilBertForSequenceClassification: ['dropout_59']\n",
|
771 |
+
"- This IS expected if you are initializing TFDistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
772 |
+
"- This IS NOT expected if you are initializing TFDistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
773 |
+
"Some layers of TFDistilBertForSequenceClassification were not initialized from the model checkpoint at Dfbenavidesr/distilbert-base-uncased-finetuned_clf-spam and are newly initialized: ['dropout_99']\n",
|
774 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
775 |
+
]
|
776 |
+
}
|
777 |
+
]
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"cell_type": "code",
|
781 |
+
"source": [
|
782 |
+
"\n"
|
783 |
+
],
|
784 |
+
"metadata": {
|
785 |
+
"colab": {
|
786 |
+
"base_uri": "https://localhost:8080/"
|
787 |
+
},
|
788 |
+
"id": "5THCF3RsgirM",
|
789 |
+
"outputId": "ddbc0b75-c437-4d97-c623-a62d421d865f"
|
790 |
+
},
|
791 |
+
"execution_count": 71,
|
792 |
+
"outputs": [
|
793 |
+
{
|
794 |
+
"output_type": "execute_result",
|
795 |
+
"data": {
|
796 |
+
"text/plain": [
|
797 |
+
"<transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertForSequenceClassification at 0x7fd8b2fec8e0>"
|
798 |
+
]
|
799 |
+
},
|
800 |
+
"metadata": {},
|
801 |
+
"execution_count": 71
|
802 |
+
}
|
803 |
+
]
|
804 |
+
}
|
805 |
+
],
|
806 |
+
"metadata": {
|
807 |
+
"accelerator": "GPU",
|
808 |
+
"colab": {
|
809 |
+
"machine_shape": "hm",
|
810 |
+
"provenance": []
|
811 |
+
},
|
812 |
+
"kernelspec": {
|
813 |
+
"display_name": "Python 3",
|
814 |
+
"name": "python3"
|
815 |
+
},
|
816 |
+
"language_info": {
|
817 |
+
"name": "python"
|
818 |
+
},
|
819 |
+
"widgets": {
|
820 |
+
"application/vnd.jupyter.widget-state+json": {
|
821 |
+
"eae418e551f44d90b53b67ab19f2681a": {
|
822 |
+
"model_module": "@jupyter-widgets/controls",
|
823 |
+
"model_name": "VBoxModel",
|
824 |
+
"model_module_version": "1.5.0",
|
825 |
+
"state": {
|
826 |
+
"_dom_classes": [],
|
827 |
+
"_model_module": "@jupyter-widgets/controls",
|
828 |
+
"_model_module_version": "1.5.0",
|
829 |
+
"_model_name": "VBoxModel",
|
830 |
+
"_view_count": null,
|
831 |
+
"_view_module": "@jupyter-widgets/controls",
|
832 |
+
"_view_module_version": "1.5.0",
|
833 |
+
"_view_name": "VBoxView",
|
834 |
+
"box_style": "",
|
835 |
+
"children": [
|
836 |
+
"IPY_MODEL_d339a1c63e24406faf2c231028ab0d7f",
|
837 |
+
"IPY_MODEL_e4665b549c0f48698529d99f475e07ca",
|
838 |
+
"IPY_MODEL_92b55d980482446da8d2aed8b58593ff",
|
839 |
+
"IPY_MODEL_2dfe4e10862342918c0c151f3f719fef",
|
840 |
+
"IPY_MODEL_5e73bccd9598457b856dd44741261ed3"
|
841 |
+
],
|
842 |
+
"layout": "IPY_MODEL_cdc2b5d89c814b6ca8c2e7a30f17b1e2"
|
843 |
+
}
|
844 |
+
},
|
845 |
+
"d339a1c63e24406faf2c231028ab0d7f": {
|
846 |
+
"model_module": "@jupyter-widgets/controls",
|
847 |
+
"model_name": "HTMLModel",
|
848 |
+
"model_module_version": "1.5.0",
|
849 |
+
"state": {
|
850 |
+
"_dom_classes": [],
|
851 |
+
"_model_module": "@jupyter-widgets/controls",
|
852 |
+
"_model_module_version": "1.5.0",
|
853 |
+
"_model_name": "HTMLModel",
|
854 |
+
"_view_count": null,
|
855 |
+
"_view_module": "@jupyter-widgets/controls",
|
856 |
+
"_view_module_version": "1.5.0",
|
857 |
+
"_view_name": "HTMLView",
|
858 |
+
"description": "",
|
859 |
+
"description_tooltip": null,
|
860 |
+
"layout": "IPY_MODEL_d76091dbf8334024b4edf2ec9e5bf32d",
|
861 |
+
"placeholder": "",
|
862 |
+
"style": "IPY_MODEL_f43c0faafc754458bce32f3eee55a153",
|
863 |
+
"value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
|
864 |
+
}
|
865 |
+
},
|
866 |
+
"e4665b549c0f48698529d99f475e07ca": {
|
867 |
+
"model_module": "@jupyter-widgets/controls",
|
868 |
+
"model_name": "PasswordModel",
|
869 |
+
"model_module_version": "1.5.0",
|
870 |
+
"state": {
|
871 |
+
"_dom_classes": [],
|
872 |
+
"_model_module": "@jupyter-widgets/controls",
|
873 |
+
"_model_module_version": "1.5.0",
|
874 |
+
"_model_name": "PasswordModel",
|
875 |
+
"_view_count": null,
|
876 |
+
"_view_module": "@jupyter-widgets/controls",
|
877 |
+
"_view_module_version": "1.5.0",
|
878 |
+
"_view_name": "PasswordView",
|
879 |
+
"continuous_update": true,
|
880 |
+
"description": "Token:",
|
881 |
+
"description_tooltip": null,
|
882 |
+
"disabled": false,
|
883 |
+
"layout": "IPY_MODEL_ff5b269f82684bc9ab81c3caae7299ca",
|
884 |
+
"placeholder": "",
|
885 |
+
"style": "IPY_MODEL_902f6a0765a0469ebd1994f789ad80e2",
|
886 |
+
"value": ""
|
887 |
+
}
|
888 |
+
},
|
889 |
+
"92b55d980482446da8d2aed8b58593ff": {
|
890 |
+
"model_module": "@jupyter-widgets/controls",
|
891 |
+
"model_name": "CheckboxModel",
|
892 |
+
"model_module_version": "1.5.0",
|
893 |
+
"state": {
|
894 |
+
"_dom_classes": [],
|
895 |
+
"_model_module": "@jupyter-widgets/controls",
|
896 |
+
"_model_module_version": "1.5.0",
|
897 |
+
"_model_name": "CheckboxModel",
|
898 |
+
"_view_count": null,
|
899 |
+
"_view_module": "@jupyter-widgets/controls",
|
900 |
+
"_view_module_version": "1.5.0",
|
901 |
+
"_view_name": "CheckboxView",
|
902 |
+
"description": "Add token as git credential?",
|
903 |
+
"description_tooltip": null,
|
904 |
+
"disabled": false,
|
905 |
+
"indent": true,
|
906 |
+
"layout": "IPY_MODEL_c14909df983c43aeb3f62b670c376b60",
|
907 |
+
"style": "IPY_MODEL_05e9de72aac143918ec0e31263075982",
|
908 |
+
"value": true
|
909 |
+
}
|
910 |
+
},
|
911 |
+
"2dfe4e10862342918c0c151f3f719fef": {
|
912 |
+
"model_module": "@jupyter-widgets/controls",
|
913 |
+
"model_name": "ButtonModel",
|
914 |
+
"model_module_version": "1.5.0",
|
915 |
+
"state": {
|
916 |
+
"_dom_classes": [],
|
917 |
+
"_model_module": "@jupyter-widgets/controls",
|
918 |
+
"_model_module_version": "1.5.0",
|
919 |
+
"_model_name": "ButtonModel",
|
920 |
+
"_view_count": null,
|
921 |
+
"_view_module": "@jupyter-widgets/controls",
|
922 |
+
"_view_module_version": "1.5.0",
|
923 |
+
"_view_name": "ButtonView",
|
924 |
+
"button_style": "",
|
925 |
+
"description": "Login",
|
926 |
+
"disabled": false,
|
927 |
+
"icon": "",
|
928 |
+
"layout": "IPY_MODEL_b92abd39e834458d95ed024468835ff4",
|
929 |
+
"style": "IPY_MODEL_46133dced4ec4122bbca398b70f4aadb",
|
930 |
+
"tooltip": ""
|
931 |
+
}
|
932 |
+
},
|
933 |
+
"5e73bccd9598457b856dd44741261ed3": {
|
934 |
+
"model_module": "@jupyter-widgets/controls",
|
935 |
+
"model_name": "HTMLModel",
|
936 |
+
"model_module_version": "1.5.0",
|
937 |
+
"state": {
|
938 |
+
"_dom_classes": [],
|
939 |
+
"_model_module": "@jupyter-widgets/controls",
|
940 |
+
"_model_module_version": "1.5.0",
|
941 |
+
"_model_name": "HTMLModel",
|
942 |
+
"_view_count": null,
|
943 |
+
"_view_module": "@jupyter-widgets/controls",
|
944 |
+
"_view_module_version": "1.5.0",
|
945 |
+
"_view_name": "HTMLView",
|
946 |
+
"description": "",
|
947 |
+
"description_tooltip": null,
|
948 |
+
"layout": "IPY_MODEL_a026cfb4f04a4e5f95fc6d6dcf53b9e1",
|
949 |
+
"placeholder": "",
|
950 |
+
"style": "IPY_MODEL_40af31601c0b4396bdf2da2d81ba1f1b",
|
951 |
+
"value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
|
952 |
+
}
|
953 |
+
},
|
954 |
+
"cdc2b5d89c814b6ca8c2e7a30f17b1e2": {
|
955 |
+
"model_module": "@jupyter-widgets/base",
|
956 |
+
"model_name": "LayoutModel",
|
957 |
+
"model_module_version": "1.2.0",
|
958 |
+
"state": {
|
959 |
+
"_model_module": "@jupyter-widgets/base",
|
960 |
+
"_model_module_version": "1.2.0",
|
961 |
+
"_model_name": "LayoutModel",
|
962 |
+
"_view_count": null,
|
963 |
+
"_view_module": "@jupyter-widgets/base",
|
964 |
+
"_view_module_version": "1.2.0",
|
965 |
+
"_view_name": "LayoutView",
|
966 |
+
"align_content": null,
|
967 |
+
"align_items": "center",
|
968 |
+
"align_self": null,
|
969 |
+
"border": null,
|
970 |
+
"bottom": null,
|
971 |
+
"display": "flex",
|
972 |
+
"flex": null,
|
973 |
+
"flex_flow": "column",
|
974 |
+
"grid_area": null,
|
975 |
+
"grid_auto_columns": null,
|
976 |
+
"grid_auto_flow": null,
|
977 |
+
"grid_auto_rows": null,
|
978 |
+
"grid_column": null,
|
979 |
+
"grid_gap": null,
|
980 |
+
"grid_row": null,
|
981 |
+
"grid_template_areas": null,
|
982 |
+
"grid_template_columns": null,
|
983 |
+
"grid_template_rows": null,
|
984 |
+
"height": null,
|
985 |
+
"justify_content": null,
|
986 |
+
"justify_items": null,
|
987 |
+
"left": null,
|
988 |
+
"margin": null,
|
989 |
+
"max_height": null,
|
990 |
+
"max_width": null,
|
991 |
+
"min_height": null,
|
992 |
+
"min_width": null,
|
993 |
+
"object_fit": null,
|
994 |
+
"object_position": null,
|
995 |
+
"order": null,
|
996 |
+
"overflow": null,
|
997 |
+
"overflow_x": null,
|
998 |
+
"overflow_y": null,
|
999 |
+
"padding": null,
|
1000 |
+
"right": null,
|
1001 |
+
"top": null,
|
1002 |
+
"visibility": null,
|
1003 |
+
"width": "50%"
|
1004 |
+
}
|
1005 |
+
},
|
1006 |
+
"d76091dbf8334024b4edf2ec9e5bf32d": {
|
1007 |
+
"model_module": "@jupyter-widgets/base",
|
1008 |
+
"model_name": "LayoutModel",
|
1009 |
+
"model_module_version": "1.2.0",
|
1010 |
+
"state": {
|
1011 |
+
"_model_module": "@jupyter-widgets/base",
|
1012 |
+
"_model_module_version": "1.2.0",
|
1013 |
+
"_model_name": "LayoutModel",
|
1014 |
+
"_view_count": null,
|
1015 |
+
"_view_module": "@jupyter-widgets/base",
|
1016 |
+
"_view_module_version": "1.2.0",
|
1017 |
+
"_view_name": "LayoutView",
|
1018 |
+
"align_content": null,
|
1019 |
+
"align_items": null,
|
1020 |
+
"align_self": null,
|
1021 |
+
"border": null,
|
1022 |
+
"bottom": null,
|
1023 |
+
"display": null,
|
1024 |
+
"flex": null,
|
1025 |
+
"flex_flow": null,
|
1026 |
+
"grid_area": null,
|
1027 |
+
"grid_auto_columns": null,
|
1028 |
+
"grid_auto_flow": null,
|
1029 |
+
"grid_auto_rows": null,
|
1030 |
+
"grid_column": null,
|
1031 |
+
"grid_gap": null,
|
1032 |
+
"grid_row": null,
|
1033 |
+
"grid_template_areas": null,
|
1034 |
+
"grid_template_columns": null,
|
1035 |
+
"grid_template_rows": null,
|
1036 |
+
"height": null,
|
1037 |
+
"justify_content": null,
|
1038 |
+
"justify_items": null,
|
1039 |
+
"left": null,
|
1040 |
+
"margin": null,
|
1041 |
+
"max_height": null,
|
1042 |
+
"max_width": null,
|
1043 |
+
"min_height": null,
|
1044 |
+
"min_width": null,
|
1045 |
+
"object_fit": null,
|
1046 |
+
"object_position": null,
|
1047 |
+
"order": null,
|
1048 |
+
"overflow": null,
|
1049 |
+
"overflow_x": null,
|
1050 |
+
"overflow_y": null,
|
1051 |
+
"padding": null,
|
1052 |
+
"right": null,
|
1053 |
+
"top": null,
|
1054 |
+
"visibility": null,
|
1055 |
+
"width": null
|
1056 |
+
}
|
1057 |
+
},
|
1058 |
+
"f43c0faafc754458bce32f3eee55a153": {
|
1059 |
+
"model_module": "@jupyter-widgets/controls",
|
1060 |
+
"model_name": "DescriptionStyleModel",
|
1061 |
+
"model_module_version": "1.5.0",
|
1062 |
+
"state": {
|
1063 |
+
"_model_module": "@jupyter-widgets/controls",
|
1064 |
+
"_model_module_version": "1.5.0",
|
1065 |
+
"_model_name": "DescriptionStyleModel",
|
1066 |
+
"_view_count": null,
|
1067 |
+
"_view_module": "@jupyter-widgets/base",
|
1068 |
+
"_view_module_version": "1.2.0",
|
1069 |
+
"_view_name": "StyleView",
|
1070 |
+
"description_width": ""
|
1071 |
+
}
|
1072 |
+
},
|
1073 |
+
"ff5b269f82684bc9ab81c3caae7299ca": {
|
1074 |
+
"model_module": "@jupyter-widgets/base",
|
1075 |
+
"model_name": "LayoutModel",
|
1076 |
+
"model_module_version": "1.2.0",
|
1077 |
+
"state": {
|
1078 |
+
"_model_module": "@jupyter-widgets/base",
|
1079 |
+
"_model_module_version": "1.2.0",
|
1080 |
+
"_model_name": "LayoutModel",
|
1081 |
+
"_view_count": null,
|
1082 |
+
"_view_module": "@jupyter-widgets/base",
|
1083 |
+
"_view_module_version": "1.2.0",
|
1084 |
+
"_view_name": "LayoutView",
|
1085 |
+
"align_content": null,
|
1086 |
+
"align_items": null,
|
1087 |
+
"align_self": null,
|
1088 |
+
"border": null,
|
1089 |
+
"bottom": null,
|
1090 |
+
"display": null,
|
1091 |
+
"flex": null,
|
1092 |
+
"flex_flow": null,
|
1093 |
+
"grid_area": null,
|
1094 |
+
"grid_auto_columns": null,
|
1095 |
+
"grid_auto_flow": null,
|
1096 |
+
"grid_auto_rows": null,
|
1097 |
+
"grid_column": null,
|
1098 |
+
"grid_gap": null,
|
1099 |
+
"grid_row": null,
|
1100 |
+
"grid_template_areas": null,
|
1101 |
+
"grid_template_columns": null,
|
1102 |
+
"grid_template_rows": null,
|
1103 |
+
"height": null,
|
1104 |
+
"justify_content": null,
|
1105 |
+
"justify_items": null,
|
1106 |
+
"left": null,
|
1107 |
+
"margin": null,
|
1108 |
+
"max_height": null,
|
1109 |
+
"max_width": null,
|
1110 |
+
"min_height": null,
|
1111 |
+
"min_width": null,
|
1112 |
+
"object_fit": null,
|
1113 |
+
"object_position": null,
|
1114 |
+
"order": null,
|
1115 |
+
"overflow": null,
|
1116 |
+
"overflow_x": null,
|
1117 |
+
"overflow_y": null,
|
1118 |
+
"padding": null,
|
1119 |
+
"right": null,
|
1120 |
+
"top": null,
|
1121 |
+
"visibility": null,
|
1122 |
+
"width": null
|
1123 |
+
}
|
1124 |
+
},
|
1125 |
+
"902f6a0765a0469ebd1994f789ad80e2": {
|
1126 |
+
"model_module": "@jupyter-widgets/controls",
|
1127 |
+
"model_name": "DescriptionStyleModel",
|
1128 |
+
"model_module_version": "1.5.0",
|
1129 |
+
"state": {
|
1130 |
+
"_model_module": "@jupyter-widgets/controls",
|
1131 |
+
"_model_module_version": "1.5.0",
|
1132 |
+
"_model_name": "DescriptionStyleModel",
|
1133 |
+
"_view_count": null,
|
1134 |
+
"_view_module": "@jupyter-widgets/base",
|
1135 |
+
"_view_module_version": "1.2.0",
|
1136 |
+
"_view_name": "StyleView",
|
1137 |
+
"description_width": ""
|
1138 |
+
}
|
1139 |
+
},
|
1140 |
+
"c14909df983c43aeb3f62b670c376b60": {
|
1141 |
+
"model_module": "@jupyter-widgets/base",
|
1142 |
+
"model_name": "LayoutModel",
|
1143 |
+
"model_module_version": "1.2.0",
|
1144 |
+
"state": {
|
1145 |
+
"_model_module": "@jupyter-widgets/base",
|
1146 |
+
"_model_module_version": "1.2.0",
|
1147 |
+
"_model_name": "LayoutModel",
|
1148 |
+
"_view_count": null,
|
1149 |
+
"_view_module": "@jupyter-widgets/base",
|
1150 |
+
"_view_module_version": "1.2.0",
|
1151 |
+
"_view_name": "LayoutView",
|
1152 |
+
"align_content": null,
|
1153 |
+
"align_items": null,
|
1154 |
+
"align_self": null,
|
1155 |
+
"border": null,
|
1156 |
+
"bottom": null,
|
1157 |
+
"display": null,
|
1158 |
+
"flex": null,
|
1159 |
+
"flex_flow": null,
|
1160 |
+
"grid_area": null,
|
1161 |
+
"grid_auto_columns": null,
|
1162 |
+
"grid_auto_flow": null,
|
1163 |
+
"grid_auto_rows": null,
|
1164 |
+
"grid_column": null,
|
1165 |
+
"grid_gap": null,
|
1166 |
+
"grid_row": null,
|
1167 |
+
"grid_template_areas": null,
|
1168 |
+
"grid_template_columns": null,
|
1169 |
+
"grid_template_rows": null,
|
1170 |
+
"height": null,
|
1171 |
+
"justify_content": null,
|
1172 |
+
"justify_items": null,
|
1173 |
+
"left": null,
|
1174 |
+
"margin": null,
|
1175 |
+
"max_height": null,
|
1176 |
+
"max_width": null,
|
1177 |
+
"min_height": null,
|
1178 |
+
"min_width": null,
|
1179 |
+
"object_fit": null,
|
1180 |
+
"object_position": null,
|
1181 |
+
"order": null,
|
1182 |
+
"overflow": null,
|
1183 |
+
"overflow_x": null,
|
1184 |
+
"overflow_y": null,
|
1185 |
+
"padding": null,
|
1186 |
+
"right": null,
|
1187 |
+
"top": null,
|
1188 |
+
"visibility": null,
|
1189 |
+
"width": null
|
1190 |
+
}
|
1191 |
+
},
|
1192 |
+
"05e9de72aac143918ec0e31263075982": {
|
1193 |
+
"model_module": "@jupyter-widgets/controls",
|
1194 |
+
"model_name": "DescriptionStyleModel",
|
1195 |
+
"model_module_version": "1.5.0",
|
1196 |
+
"state": {
|
1197 |
+
"_model_module": "@jupyter-widgets/controls",
|
1198 |
+
"_model_module_version": "1.5.0",
|
1199 |
+
"_model_name": "DescriptionStyleModel",
|
1200 |
+
"_view_count": null,
|
1201 |
+
"_view_module": "@jupyter-widgets/base",
|
1202 |
+
"_view_module_version": "1.2.0",
|
1203 |
+
"_view_name": "StyleView",
|
1204 |
+
"description_width": ""
|
1205 |
+
}
|
1206 |
+
},
|
1207 |
+
"b92abd39e834458d95ed024468835ff4": {
|
1208 |
+
"model_module": "@jupyter-widgets/base",
|
1209 |
+
"model_name": "LayoutModel",
|
1210 |
+
"model_module_version": "1.2.0",
|
1211 |
+
"state": {
|
1212 |
+
"_model_module": "@jupyter-widgets/base",
|
1213 |
+
"_model_module_version": "1.2.0",
|
1214 |
+
"_model_name": "LayoutModel",
|
1215 |
+
"_view_count": null,
|
1216 |
+
"_view_module": "@jupyter-widgets/base",
|
1217 |
+
"_view_module_version": "1.2.0",
|
1218 |
+
"_view_name": "LayoutView",
|
1219 |
+
"align_content": null,
|
1220 |
+
"align_items": null,
|
1221 |
+
"align_self": null,
|
1222 |
+
"border": null,
|
1223 |
+
"bottom": null,
|
1224 |
+
"display": null,
|
1225 |
+
"flex": null,
|
1226 |
+
"flex_flow": null,
|
1227 |
+
"grid_area": null,
|
1228 |
+
"grid_auto_columns": null,
|
1229 |
+
"grid_auto_flow": null,
|
1230 |
+
"grid_auto_rows": null,
|
1231 |
+
"grid_column": null,
|
1232 |
+
"grid_gap": null,
|
1233 |
+
"grid_row": null,
|
1234 |
+
"grid_template_areas": null,
|
1235 |
+
"grid_template_columns": null,
|
1236 |
+
"grid_template_rows": null,
|
1237 |
+
"height": null,
|
1238 |
+
"justify_content": null,
|
1239 |
+
"justify_items": null,
|
1240 |
+
"left": null,
|
1241 |
+
"margin": null,
|
1242 |
+
"max_height": null,
|
1243 |
+
"max_width": null,
|
1244 |
+
"min_height": null,
|
1245 |
+
"min_width": null,
|
1246 |
+
"object_fit": null,
|
1247 |
+
"object_position": null,
|
1248 |
+
"order": null,
|
1249 |
+
"overflow": null,
|
1250 |
+
"overflow_x": null,
|
1251 |
+
"overflow_y": null,
|
1252 |
+
"padding": null,
|
1253 |
+
"right": null,
|
1254 |
+
"top": null,
|
1255 |
+
"visibility": null,
|
1256 |
+
"width": null
|
1257 |
+
}
|
1258 |
+
},
|
1259 |
+
"46133dced4ec4122bbca398b70f4aadb": {
|
1260 |
+
"model_module": "@jupyter-widgets/controls",
|
1261 |
+
"model_name": "ButtonStyleModel",
|
1262 |
+
"model_module_version": "1.5.0",
|
1263 |
+
"state": {
|
1264 |
+
"_model_module": "@jupyter-widgets/controls",
|
1265 |
+
"_model_module_version": "1.5.0",
|
1266 |
+
"_model_name": "ButtonStyleModel",
|
1267 |
+
"_view_count": null,
|
1268 |
+
"_view_module": "@jupyter-widgets/base",
|
1269 |
+
"_view_module_version": "1.2.0",
|
1270 |
+
"_view_name": "StyleView",
|
1271 |
+
"button_color": null,
|
1272 |
+
"font_weight": ""
|
1273 |
+
}
|
1274 |
+
},
|
1275 |
+
"a026cfb4f04a4e5f95fc6d6dcf53b9e1": {
|
1276 |
+
"model_module": "@jupyter-widgets/base",
|
1277 |
+
"model_name": "LayoutModel",
|
1278 |
+
"model_module_version": "1.2.0",
|
1279 |
+
"state": {
|
1280 |
+
"_model_module": "@jupyter-widgets/base",
|
1281 |
+
"_model_module_version": "1.2.0",
|
1282 |
+
"_model_name": "LayoutModel",
|
1283 |
+
"_view_count": null,
|
1284 |
+
"_view_module": "@jupyter-widgets/base",
|
1285 |
+
"_view_module_version": "1.2.0",
|
1286 |
+
"_view_name": "LayoutView",
|
1287 |
+
"align_content": null,
|
1288 |
+
"align_items": null,
|
1289 |
+
"align_self": null,
|
1290 |
+
"border": null,
|
1291 |
+
"bottom": null,
|
1292 |
+
"display": null,
|
1293 |
+
"flex": null,
|
1294 |
+
"flex_flow": null,
|
1295 |
+
"grid_area": null,
|
1296 |
+
"grid_auto_columns": null,
|
1297 |
+
"grid_auto_flow": null,
|
1298 |
+
"grid_auto_rows": null,
|
1299 |
+
"grid_column": null,
|
1300 |
+
"grid_gap": null,
|
1301 |
+
"grid_row": null,
|
1302 |
+
"grid_template_areas": null,
|
1303 |
+
"grid_template_columns": null,
|
1304 |
+
"grid_template_rows": null,
|
1305 |
+
"height": null,
|
1306 |
+
"justify_content": null,
|
1307 |
+
"justify_items": null,
|
1308 |
+
"left": null,
|
1309 |
+
"margin": null,
|
1310 |
+
"max_height": null,
|
1311 |
+
"max_width": null,
|
1312 |
+
"min_height": null,
|
1313 |
+
"min_width": null,
|
1314 |
+
"object_fit": null,
|
1315 |
+
"object_position": null,
|
1316 |
+
"order": null,
|
1317 |
+
"overflow": null,
|
1318 |
+
"overflow_x": null,
|
1319 |
+
"overflow_y": null,
|
1320 |
+
"padding": null,
|
1321 |
+
"right": null,
|
1322 |
+
"top": null,
|
1323 |
+
"visibility": null,
|
1324 |
+
"width": null
|
1325 |
+
}
|
1326 |
+
},
|
1327 |
+
"40af31601c0b4396bdf2da2d81ba1f1b": {
|
1328 |
+
"model_module": "@jupyter-widgets/controls",
|
1329 |
+
"model_name": "DescriptionStyleModel",
|
1330 |
+
"model_module_version": "1.5.0",
|
1331 |
+
"state": {
|
1332 |
+
"_model_module": "@jupyter-widgets/controls",
|
1333 |
+
"_model_module_version": "1.5.0",
|
1334 |
+
"_model_name": "DescriptionStyleModel",
|
1335 |
+
"_view_count": null,
|
1336 |
+
"_view_module": "@jupyter-widgets/base",
|
1337 |
+
"_view_module_version": "1.2.0",
|
1338 |
+
"_view_name": "StyleView",
|
1339 |
+
"description_width": ""
|
1340 |
+
}
|
1341 |
+
}
|
1342 |
+
}
|
1343 |
+
}
|
1344 |
+
},
|
1345 |
+
"nbformat": 4,
|
1346 |
+
"nbformat_minor": 0
|
1347 |
+
}
|