|
import pytest |
|
import torch |
|
from torch.autograd import gradcheck |
|
|
|
import kornia.testing as utils |
|
from kornia.feature import HardNet, HardNet8 |
|
from kornia.testing import assert_close |
|
|
|
|
|
class TestHardNet: |
|
def test_shape(self, device): |
|
inp = torch.ones(1, 1, 32, 32, device=device) |
|
hardnet = HardNet().to(device) |
|
hardnet.eval() |
|
out = hardnet(inp) |
|
assert out.shape == (1, 128) |
|
|
|
def test_shape_batch(self, device): |
|
inp = torch.ones(16, 1, 32, 32, device=device) |
|
hardnet = HardNet().to(device) |
|
out = hardnet(inp) |
|
assert out.shape == (16, 128) |
|
|
|
@pytest.mark.skip("jacobian not well computed") |
|
def test_gradcheck(self, device): |
|
patches = torch.rand(2, 1, 32, 32, device=device) |
|
patches = utils.tensor_to_gradcheck_var(patches) |
|
hardnet = HardNet().to(patches.device, patches.dtype) |
|
assert gradcheck(hardnet, (patches,), eps=1e-4, atol=1e-4, raise_exception=True) |
|
|
|
@pytest.mark.jit |
|
def test_jit(self, device, dtype): |
|
B, C, H, W = 2, 1, 32, 32 |
|
patches = torch.ones(B, C, H, W, device=device, dtype=dtype) |
|
model = HardNet().to(patches.device, patches.dtype).eval() |
|
model_jit = torch.jit.script(HardNet().to(patches.device, patches.dtype).eval()) |
|
assert_close(model(patches), model_jit(patches)) |
|
|
|
|
|
class TestHardNet8: |
|
def test_shape(self, device): |
|
inp = torch.ones(1, 1, 32, 32, device=device) |
|
hardnet = HardNet8().to(device) |
|
hardnet.eval() |
|
out = hardnet(inp) |
|
assert out.shape == (1, 128) |
|
|
|
def test_shape_batch(self, device): |
|
inp = torch.ones(16, 1, 32, 32, device=device) |
|
hardnet = HardNet8().to(device) |
|
out = hardnet(inp) |
|
assert out.shape == (16, 128) |
|
|
|
@pytest.mark.skip("jacobian not well computed") |
|
def test_gradcheck(self, device): |
|
patches = torch.rand(2, 1, 32, 32, device=device) |
|
patches = utils.tensor_to_gradcheck_var(patches) |
|
hardnet = HardNet8().to(patches.device, patches.dtype) |
|
assert gradcheck(hardnet, (patches,), eps=1e-4, atol=1e-4, raise_exception=True) |
|
|
|
@pytest.mark.jit |
|
def test_jit(self, device, dtype): |
|
B, C, H, W = 2, 1, 32, 32 |
|
patches = torch.ones(B, C, H, W, device=device, dtype=dtype) |
|
model = HardNet8().to(patches.device, patches.dtype).eval() |
|
model_jit = torch.jit.script(HardNet8().to(patches.device, patches.dtype).eval()) |
|
assert_close(model(patches), model_jit(patches)) |
|
|