DewiBrynJones's picture
End of training
fe799c5 verified
|
raw
history blame
2.24 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
metrics:
  - wer
model-index:
  - name: whisper-large-v3-ft-btb-ccv-cy
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv default
          type: DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.29472481531011024

whisper-large-v3-ft-btb-ccv-cy

This model is a fine-tuned version of openai/whisper-large-v3 on the DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4479
  • Wer: 0.2947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4118 0.7722 1000 0.4898 0.3627
0.2629 1.5444 2000 0.4272 0.3145
0.1677 2.3166 3000 0.4243 0.3039
0.0841 3.0888 4000 0.4493 0.2968
0.0845 3.8610 5000 0.4479 0.2947

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1