metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset. It achieves the following results on the evaluation set:
- Loss: 1.6956
- Wer: 0.7702
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.1548 | 100 | 3.5587 | 1.0 |
No log | 0.3096 | 200 | 3.2506 | 1.0 |
No log | 0.4644 | 300 | 2.7740 | 1.0000 |
No log | 0.6192 | 400 | 1.1196 | 0.7807 |
3.6484 | 0.7740 | 500 | 0.9134 | 0.6539 |
3.6484 | 0.9288 | 600 | 0.7675 | 0.5923 |
3.6484 | 1.0836 | 700 | 0.7208 | 0.5290 |
3.6484 | 1.2384 | 800 | 0.6209 | 0.4745 |
3.6484 | 1.3932 | 900 | 0.6220 | 0.4788 |
0.6286 | 1.5480 | 1000 | 0.5739 | 0.4588 |
0.6286 | 1.7028 | 1100 | 0.5642 | 0.4262 |
0.6286 | 1.8576 | 1200 | 0.5512 | 0.4208 |
0.6286 | 2.0124 | 1300 | 0.5275 | 0.3865 |
0.6286 | 2.1672 | 1400 | 0.4955 | 0.3755 |
0.4816 | 2.3220 | 1500 | 0.4909 | 0.3733 |
0.4816 | 2.4768 | 1600 | 0.4983 | 0.3728 |
0.4816 | 2.6316 | 1700 | 0.4891 | 0.3655 |
0.4816 | 2.7864 | 1800 | 0.4796 | 0.3571 |
0.4816 | 2.9412 | 1900 | 0.4643 | 0.3592 |
0.4017 | 3.0960 | 2000 | 0.5085 | 0.3698 |
0.4017 | 3.2508 | 2100 | 0.6755 | 0.4530 |
0.4017 | 3.4056 | 2200 | 0.7100 | 0.5108 |
0.4017 | 3.5604 | 2300 | 0.8311 | 0.5643 |
0.4017 | 3.7152 | 2400 | 0.7032 | 0.5029 |
0.6839 | 3.8700 | 2500 | 0.7071 | 0.5007 |
0.6839 | 4.0248 | 2600 | 0.8224 | 0.5069 |
0.6839 | 4.1796 | 2700 | 0.8344 | 0.5162 |
0.6839 | 4.3344 | 2800 | 0.9089 | 0.5620 |
0.6839 | 4.4892 | 2900 | 0.9665 | 0.5640 |
0.8292 | 4.6440 | 3000 | 0.9128 | 0.5415 |
0.8292 | 4.7988 | 3100 | 1.1925 | 0.5939 |
0.8292 | 4.9536 | 3200 | 1.4327 | 0.6999 |
0.8292 | 5.1084 | 3300 | 1.2741 | 0.7827 |
0.8292 | 5.2632 | 3400 | 1.9348 | 0.8742 |
1.4131 | 5.4180 | 3500 | 1.9216 | 0.9870 |
1.4131 | 5.5728 | 3600 | 1.8565 | 0.9367 |
1.4131 | 5.7276 | 3700 | 1.7828 | 0.8240 |
1.4131 | 5.8824 | 3800 | 1.6847 | 0.8059 |
1.4131 | 6.0372 | 3900 | 1.6440 | 0.7984 |
1.7728 | 6.1920 | 4000 | 1.6765 | 0.8053 |
1.7728 | 6.3467 | 4100 | 1.6733 | 0.8024 |
1.7728 | 6.5015 | 4200 | 1.6601 | 0.7900 |
1.7728 | 6.6563 | 4300 | 1.6605 | 0.7973 |
1.7728 | 6.8111 | 4400 | 1.6599 | 0.7805 |
1.6777 | 6.9659 | 4500 | 1.6359 | 0.7693 |
1.6777 | 7.1207 | 4600 | 1.6400 | 0.7651 |
1.6777 | 7.2755 | 4700 | 1.6759 | 0.7672 |
1.6777 | 7.4303 | 4800 | 1.6849 | 0.7686 |
1.6777 | 7.5851 | 4900 | 1.6858 | 0.7690 |
1.683 | 7.7399 | 5000 | 1.6956 | 0.7702 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1