exo-5 / README.md
DevforMM's picture
End of training
fd21d92 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: exo-5
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
        metrics:
          - name: Wer
            type: wer
            value: 0.09080525414049115

exo-5

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1314
  • Wer Ortho: 0.1507
  • Wer: 0.0908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.12
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0443 1.0 57 0.0811 0.1175 0.0680
0.0262 2.0 114 0.1065 0.1454 0.0977
0.0409 3.0 171 0.1275 0.1074 0.0748
0.0204 4.0 228 0.1301 0.1371 0.1057
0.0095 5.0 285 0.1293 0.1982 0.1605
0.0071 6.0 342 0.1422 0.1822 0.1365
0.0011 7.0 399 0.1329 0.1448 0.0982
0.0049 8.0 456 0.1294 0.1359 0.0788
0.0012 9.0 513 0.1296 0.1478 0.0891
0.0002 10.0 570 0.1305 0.1484 0.0891
0.0013 11.0 627 0.1298 0.1490 0.0897
0.0002 12.0 684 0.1309 0.1490 0.0891
0.0004 13.0 741 0.1311 0.1513 0.0914
0.0001 14.0 798 0.1313 0.1507 0.0908
0.0001 15.0 855 0.1314 0.1507 0.0908

Framework versions

  • Transformers 4.55.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.2