Dev372's picture
End of training
861c33d verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - Dev372/Medical_STT_Dataset_1_0_check_training
metrics:
  - wer
model-index:
  - name: English Whisper Model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical
          type: Dev372/Medical_STT_Dataset_1_0_check_training
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 6.0845332094751505

English Whisper Model

This model is a fine-tuned version of openai/whisper-tiny.en on the Medical dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1019
  • Wer: 6.0845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 18
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8606 1.0101 100 1.6059 9.1965
1.0954 2.0202 200 1.0513 6.2935
0.6627 3.0303 300 0.6161 6.6187
0.1747 4.0404 400 0.1527 4.2034
0.0554 5.0505 500 0.0924 5.3182
0.028 6.0606 600 0.0819 4.0641
0.0132 7.0707 700 0.0835 5.6897
0.0085 8.0808 800 0.0913 5.5504
0.0056 9.0909 900 0.0932 5.8059
0.0043 10.1010 1000 0.0982 5.8059
0.0023 11.1111 1100 0.0990 5.8755
0.0016 12.1212 1200 0.1005 6.0149
0.0015 13.1313 1300 0.1015 6.0613
0.0016 14.1414 1400 0.1017 6.0613
0.0015 15.1515 1500 0.1019 6.0845

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1