Dev372's picture
End of training
1a6bc53 verified
---
language:
- en
license: apache-2.0
base_model: openai/whisper-base.en
tags:
- generated_from_trainer
datasets:
- Hani89/medical_asr_recording_dataset
metrics:
- wer
model-index:
- name: English Whisper Model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Medical
type: Hani89/medical_asr_recording_dataset
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 8.218579234972678
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# English Whisper Model
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the Medical dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1241
- Wer: 8.2186
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.0573 | 3.0030 | 1000 | 0.1333 | 8.6703 |
| 0.0073 | 6.0060 | 2000 | 0.1185 | 8.2914 |
| 0.0009 | 9.0090 | 3000 | 0.1241 | 8.2186 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1