{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eda34f03880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eda34f03910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eda34f039a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eda34f03a30>", "_build": "<function ActorCriticPolicy._build at 0x7eda34f03ac0>", "forward": "<function ActorCriticPolicy.forward at 0x7eda34f03b50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eda34f03be0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eda34f03c70>", "_predict": "<function ActorCriticPolicy._predict at 0x7eda34f03d00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eda34f03d90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eda34f03e20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eda34f03eb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eda34efe340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 458752, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690117914821245918, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAmhb17WpG6sjDRtiYDs7EOp4A6OxD1NQAAgD8AAIA/RoERvskoUD3TVYI+xEDavoMwED1+TxQ9AAAAAAAAAADNVPk9n9ORu5IPVr7JKUy+Gz9CvE68nzsAAAAAAAAAAPMa0j19lj0/fQL8PZlESr+1fcY9zYc2PQAAAAAAAAAAzagZPk37oz85rQg/fKQPv9f2XD76dls+AAAAAAAAAADACUE+TJnZPq+dDb4Ey/W+QIf/PdalI74AAAAAAAAAADrnFT64WKu77XXtOefKPbfyBAS95MgOuQAAgD8AAIA/Js6jPZw+Fbz8Nba9qdsjPfDpcz2c1gS+AACAPwAAgD8aF8o9KXg+ugqfC7SeFFWv+pBeOpZ4kjMAAIA/AACAPwAXfj3hrLa6yIY2vWBGSzXktoY5CtWrtAAAgD8AAIA/Ji6YPY9mQLoe0TQyOk3zsIHoCbq2jnmyAACAPwAAgD8aOQc+hUaYu5rEsDpkyG24ic8EvSKY4rkAAIA/AACAP83etTz7zq8/7508P8GjFL8GFaG8ARy5vQAAAAAAAAAAlu2aPpudfD/68sM+B9wUv+jV9j72vBA9AAAAAAAAAABzwwM+k7lxP15Tmz1TqC2/549EPkA9STwAAAAAAAAAAE0eBj2PYim6moCRtdHTsbDy4v461t63NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.541248, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNm7YTTOPiMAWyUS6OMAXSUR0CgeJ0Jv5xjdX2UKGgGR0ByGp/OMVDbaAdLiWgIR0CgeJ9To+wDdX2UKGgGR0Byxv+jua4MaAdLvmgIR0CgeMUuctoSdX2UKGgGR0Byp8TrVvuPaAdL1WgIR0CgeMTbvgFYdX2UKGgGR0ByTnV4HHFQaAdLumgIR0CgeNDWsijddX2UKGgGR0Bx8GLWI42kaAdLy2gIR0CgeRz6zmfXdX2UKGgGR0BxDSIAOrhjaAdLqGgIR0CgeSKo60Y1dX2UKGgGR0By42hIvrWzaAdL42gIR0CgeYt+LFXJdX2UKGgGR0Bv+1V1fVqfaAdLrGgIR0CgeZW5H3DfdX2UKGgGR0ByQDz19ORDaAdLx2gIR0CgeZw8wHqvdX2UKGgGR0Bt26yY5T60aAdLqGgIR0CgebMUZeiSdX2UKGgGR0Bxha5H3DekaAdLvmgIR0CgeeRWtEG8dX2UKGgGR0By8GCcwxnGaAdLoGgIR0CgejRaX8fndX2UKGgGR0BvOvlXA/LUaAdLomgIR0Cgek6DGtITdX2UKGgGR0Bx6n6be/HpaAdLvGgIR0CgelQOWjXWdX2UKGgGR0Bv3mrlvIfbaAdLqWgIR0Cgepts3yZsdX2UKGgGR0BwtAg8r7O3aAdLpWgIR0Cgep0x/NJOdX2UKGgGR0Bw+PAsTWXkaAdLx2gIR0Cgesj9OymidX2UKGgGR0BzxcBp5/smaAdLuWgIR0Cgesj94u9OdX2UKGgGR0Bx4Ygkka/AaAdLsWgIR0CgexSNOuaGdX2UKGgGR0BxqeY5T6zmaAdLn2gIR0Cge2752yLRdX2UKGgGR0ByRhj+aScLaAdL5mgIR0Cge8gNXo1UdX2UKGgGR0ByGGfGuLaVaAdLyWgIR0Cge+GkFfRedX2UKGgGR0BwY+tJWeYlaAdLqWgIR0Cge+L4WUKRdX2UKGgGR0Bx6qjsUqQSaAdLiGgIR0Cge+6OxSpBdX2UKGgGR0Bl5loHs1KoaAdN6ANoCEdAoHvyhN/OMXV9lChoBkdAcia8baRISWgHS9JoCEdAoHwGLBKtgnV9lChoBkdAcbI0g8r7O2gHS6NoCEdAoHwfOW0JGHV9lChoBkdAbyqu7HyVfWgHS5FoCEdAoHxO0CzTnnV9lChoBkdAcpH24/eLvWgHS7JoCEdAoHxhzBAOa3V9lChoBkdAcn7vS+g132gHS5xoCEdAoHyVH8TBZnV9lChoBkdAcQeJ+lTFVGgHS7ZoCEdAoHyxtWMjvHV9lChoBkdAcp5bFjurqGgHS9FoCEdAoH0yPdVNpXV9lChoBkdAcbtwIdELIGgHS5VoCEdAoH2LxI8QqnV9lChoBkdAcqx44Ia99WgHS9ZoCEdAoH2P20zCUHV9lChoBkdAcc6sAvL5h2gHS5loCEdAoH2aFVT723V9lChoBkdAbyb18LKFI2gHS59oCEdAoH221IAfdXV9lChoBkdAbyK6p5u63GgHS5doCEdAoH2400m+kHV9lChoBkdAcgwIS13MZGgHS6loCEdAoH3Xz4DcM3V9lChoBkdAcmOIyj59E2gHS9RoCEdAoH3cw1zhgnV9lChoBkdAcnkyLhrFfmgHS49oCEdAoH4MLYwqRXV9lChoBkdAcdZMWGh24mgHS9toCEdAoH5MVgx8D3V9lChoBkdAcT/00WM0g2gHS4toCEdAoH5dLHuJDXV9lChoBkdAcsXgCwKSgWgHS+RoCEdAoH7ORzRx+HV9lChoBkdAcohE12q1gGgHS9RoCEdAoH7XsNUfgnV9lChoBkdAcrQR4yGi6GgHS69oCEdAoH9g0/GEPHV9lChoBkdAckoKNQ0oB2gHS+5oCEdAoH+C8DjioHV9lChoBkdAcu2wRoRIz2gHS6loCEdAoH+u4qgAZXV9lChoBkdAb7yEyLyc1GgHS6FoCEdAoH/Csr/bTXV9lChoBkdAbzD4oJAt4GgHS51oCEdAoH/XkLhJiHV9lChoBkdAcNcRgqmTDGgHS7hoCEdAoIALNnoPkXV9lChoBkdAcY+0CRwIdGgHS8JoCEdAoIAM7dSEUXV9lChoBkdAcssANoakymgHS9VoCEdAoIA76pHZsnV9lChoBkdAc5jl2NedCmgHS71oCEdAoIBF8uzyBnV9lChoBkdAcj/Jz1bqyGgHS51oCEdAoIBhpN9H+nV9lChoBkdAShf9R77bc2gHS4doCEdAoICHYJ3PiXV9lChoBkdAc5t6v7m+02gHS8doCEdAoICXldTo+3V9lChoBkdAc8UWZJCjUWgHS7ZoCEdAoICfGS6lL3V9lChoBkdAcEwVawD/2mgHS6hoCEdAoIDvIhhYvHV9lChoBkdAb6KNnXd0rGgHS6RoCEdAoIFnFkxyn3V9lChoBkdAcPtPiDM/yGgHS6JoCEdAoIGA1Nxlx3V9lChoBkdAcIM2P1ct5GgHS5JoCEdAoIGgR5C4SnV9lChoBkdAcfhEq2Bre2gHS45oCEdAoIHGzSkTH3V9lChoBkdAcrtZyuIRAmgHS5poCEdAoIHxBiTdL3V9lChoBkdAcxRkupS75GgHS9hoCEdAoIJecFyJbnV9lChoBkdActw+bVjI72gHS9poCEdAoIJ4JLM9sHV9lChoBkdAckAoysS00GgHS7hoCEdAoIKCEi+tbXV9lChoBkdAcaJuqm0mdGgHS7doCEdAoIKjMTviLnV9lChoBkdAbvp8twrDqGgHS65oCEdAoIKr61stTXV9lChoBkdAcIFZGrjo6mgHS6hoCEdAoIKqKBNEgHV9lChoBkdAcUS7OVxCIGgHS8doCEdAoIK6O938oHV9lChoBkdAcUxdweeWfWgHS8JoCEdAoIMVB0IToXV9lChoBkdAcymXNke6qmgHS9NoCEdAoIPl7laKUHV9lChoBkdAb+hgF5fMOmgHS5toCEdAoIRY6jnFHnV9lChoBkdAcr/9r433pWgHS8ZoCEdAoISBaRp1zXV9lChoBkdActUnc+JP7GgHS8NoCEdAoISfwkPcz3V9lChoBkdActQv3JxNqWgHS9poCEdAoIS2qDK5kXV9lChoBkdAcdQhnrY5DWgHS85oCEdAoIUKcf/3nXV9lChoBkdAZbkHqu8sc2gHTegDaAhHQKCFXt0FKTV1fZQoaAZHQHGFIEW69TRoB0u7aAhHQKCFgqZML4N1fZQoaAZHQHEonZbpu/FoB0unaAhHQKCFlGjsUqR1fZQoaAZHQHLLVyR0U49oB0u7aAhHQKCF2YrrgO11fZQoaAZHQHGgzGLk0aZoB0u8aAhHQKCF6H31zyV1fZQoaAZHQHK1JVjqfOFoB0vaaAhHQKCGJ1wHZ9N1fZQoaAZHQHLEqMrEtNBoB0vhaAhHQKCGUO+7Dl51fZQoaAZHQHLctalk6LhoB0u9aAhHQKCGZ/PPcBV1fZQoaAZHQGOWATyrgfloB03oA2gIR0CghwtKh+OPdX2UKGgGR0Bvo1HH3lCDaAdLnWgIR0Cgh0+lKsdUdX2UKGgGR0Byfwi0OVgQaAdL0mgIR0Cgh4hLf1pTdX2UKGgGR0Bx8hb9qDbraAdLhmgIR0Cgh8TDGcWkdX2UKGgGR0BxiS704BFNaAdLwGgIR0Cgh8r+o99udX2UKGgGR0ByX8ebNKRMaAdLlGgIR0Cgh9zzND+jdX2UKGgGR0BzXQV+I/JOaAdLvWgIR0Cgh/KjSG8FdX2UKGgGR0ByES7pV0cPaAdL1GgIR0Cgh/8hTwUhdX2UKGgGR0BwzsAWBSUDaAdLmGgIR0CgiFVAZ88cdX2UKGgGR0BwQ82YOUdJaAdL72gIR0CgiMfU4JeFdX2UKGgGR0By2btZ3cHoaAdLwmgIR0CgiN0NSZSfdX2UKGgGR0ByqTmRvFWGaAdLumgIR0CgiO/kmx+sdX2UKGgGR0BxgVzOoo/iaAdLyGgIR0CgiTYwh4dIdX2UKGgGR0Bx5IbGWD6FaAdL2mgIR0CgiXtWuHN5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 510, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |