Commit
·
144178e
1
Parent(s):
740462d
Upload agent trained on PPO LunarLander-v2 - DRL Unit 1
Browse files- README.md +37 -0
- config.json +1 -0
- model-v2.zip +3 -0
- model-v2/_stable_baselines3_version +1 -0
- model-v2/data +99 -0
- model-v2/policy.optimizer.pth +3 -0
- model-v2/policy.pth +3 -0
- model-v2/pytorch_variables.pth +3 -0
- model-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 279.20 +/- 22.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eda34f03880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eda34f03910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eda34f039a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eda34f03a30>", "_build": "<function ActorCriticPolicy._build at 0x7eda34f03ac0>", "forward": "<function ActorCriticPolicy.forward at 0x7eda34f03b50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eda34f03be0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eda34f03c70>", "_predict": "<function ActorCriticPolicy._predict at 0x7eda34f03d00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eda34f03d90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eda34f03e20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eda34f03eb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eda34efe340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 458752, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690117914821245918, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAmhb17WpG6sjDRtiYDs7EOp4A6OxD1NQAAgD8AAIA/RoERvskoUD3TVYI+xEDavoMwED1+TxQ9AAAAAAAAAADNVPk9n9ORu5IPVr7JKUy+Gz9CvE68nzsAAAAAAAAAAPMa0j19lj0/fQL8PZlESr+1fcY9zYc2PQAAAAAAAAAAzagZPk37oz85rQg/fKQPv9f2XD76dls+AAAAAAAAAADACUE+TJnZPq+dDb4Ey/W+QIf/PdalI74AAAAAAAAAADrnFT64WKu77XXtOefKPbfyBAS95MgOuQAAgD8AAIA/Js6jPZw+Fbz8Nba9qdsjPfDpcz2c1gS+AACAPwAAgD8aF8o9KXg+ugqfC7SeFFWv+pBeOpZ4kjMAAIA/AACAPwAXfj3hrLa6yIY2vWBGSzXktoY5CtWrtAAAgD8AAIA/Ji6YPY9mQLoe0TQyOk3zsIHoCbq2jnmyAACAPwAAgD8aOQc+hUaYu5rEsDpkyG24ic8EvSKY4rkAAIA/AACAP83etTz7zq8/7508P8GjFL8GFaG8ARy5vQAAAAAAAAAAlu2aPpudfD/68sM+B9wUv+jV9j72vBA9AAAAAAAAAABzwwM+k7lxP15Tmz1TqC2/549EPkA9STwAAAAAAAAAAE0eBj2PYim6moCRtdHTsbDy4v461t63NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.541248, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNm7YTTOPiMAWyUS6OMAXSUR0CgeJ0Jv5xjdX2UKGgGR0ByGp/OMVDbaAdLiWgIR0CgeJ9To+wDdX2UKGgGR0Byxv+jua4MaAdLvmgIR0CgeMUuctoSdX2UKGgGR0Byp8TrVvuPaAdL1WgIR0CgeMTbvgFYdX2UKGgGR0ByTnV4HHFQaAdLumgIR0CgeNDWsijddX2UKGgGR0Bx8GLWI42kaAdLy2gIR0CgeRz6zmfXdX2UKGgGR0BxDSIAOrhjaAdLqGgIR0CgeSKo60Y1dX2UKGgGR0By42hIvrWzaAdL42gIR0CgeYt+LFXJdX2UKGgGR0Bv+1V1fVqfaAdLrGgIR0CgeZW5H3DfdX2UKGgGR0ByQDz19ORDaAdLx2gIR0CgeZw8wHqvdX2UKGgGR0Bt26yY5T60aAdLqGgIR0CgebMUZeiSdX2UKGgGR0Bxha5H3DekaAdLvmgIR0CgeeRWtEG8dX2UKGgGR0By8GCcwxnGaAdLoGgIR0CgejRaX8fndX2UKGgGR0BvOvlXA/LUaAdLomgIR0Cgek6DGtITdX2UKGgGR0Bx6n6be/HpaAdLvGgIR0CgelQOWjXWdX2UKGgGR0Bv3mrlvIfbaAdLqWgIR0Cgepts3yZsdX2UKGgGR0BwtAg8r7O3aAdLpWgIR0Cgep0x/NJOdX2UKGgGR0Bw+PAsTWXkaAdLx2gIR0Cgesj9OymidX2UKGgGR0BzxcBp5/smaAdLuWgIR0Cgesj94u9OdX2UKGgGR0Bx4Ygkka/AaAdLsWgIR0CgexSNOuaGdX2UKGgGR0BxqeY5T6zmaAdLn2gIR0Cge2752yLRdX2UKGgGR0ByRhj+aScLaAdL5mgIR0Cge8gNXo1UdX2UKGgGR0ByGGfGuLaVaAdLyWgIR0Cge+GkFfRedX2UKGgGR0BwY+tJWeYlaAdLqWgIR0Cge+L4WUKRdX2UKGgGR0Bx6qjsUqQSaAdLiGgIR0Cge+6OxSpBdX2UKGgGR0Bl5loHs1KoaAdN6ANoCEdAoHvyhN/OMXV9lChoBkdAcia8baRISWgHS9JoCEdAoHwGLBKtgnV9lChoBkdAcbI0g8r7O2gHS6NoCEdAoHwfOW0JGHV9lChoBkdAbyqu7HyVfWgHS5FoCEdAoHxO0CzTnnV9lChoBkdAcpH24/eLvWgHS7JoCEdAoHxhzBAOa3V9lChoBkdAcn7vS+g132gHS5xoCEdAoHyVH8TBZnV9lChoBkdAcQeJ+lTFVGgHS7ZoCEdAoHyxtWMjvHV9lChoBkdAcp5bFjurqGgHS9FoCEdAoH0yPdVNpXV9lChoBkdAcbtwIdELIGgHS5VoCEdAoH2LxI8QqnV9lChoBkdAcqx44Ia99WgHS9ZoCEdAoH2P20zCUHV9lChoBkdAcc6sAvL5h2gHS5loCEdAoH2aFVT723V9lChoBkdAbyb18LKFI2gHS59oCEdAoH221IAfdXV9lChoBkdAbyK6p5u63GgHS5doCEdAoH2400m+kHV9lChoBkdAcgwIS13MZGgHS6loCEdAoH3Xz4DcM3V9lChoBkdAcmOIyj59E2gHS9RoCEdAoH3cw1zhgnV9lChoBkdAcnkyLhrFfmgHS49oCEdAoH4MLYwqRXV9lChoBkdAcdZMWGh24mgHS9toCEdAoH5MVgx8D3V9lChoBkdAcT/00WM0g2gHS4toCEdAoH5dLHuJDXV9lChoBkdAcsXgCwKSgWgHS+RoCEdAoH7ORzRx+HV9lChoBkdAcohE12q1gGgHS9RoCEdAoH7XsNUfgnV9lChoBkdAcrQR4yGi6GgHS69oCEdAoH9g0/GEPHV9lChoBkdAckoKNQ0oB2gHS+5oCEdAoH+C8DjioHV9lChoBkdAcu2wRoRIz2gHS6loCEdAoH+u4qgAZXV9lChoBkdAb7yEyLyc1GgHS6FoCEdAoH/Csr/bTXV9lChoBkdAbzD4oJAt4GgHS51oCEdAoH/XkLhJiHV9lChoBkdAcNcRgqmTDGgHS7hoCEdAoIALNnoPkXV9lChoBkdAcY+0CRwIdGgHS8JoCEdAoIAM7dSEUXV9lChoBkdAcssANoakymgHS9VoCEdAoIA76pHZsnV9lChoBkdAc5jl2NedCmgHS71oCEdAoIBF8uzyBnV9lChoBkdAcj/Jz1bqyGgHS51oCEdAoIBhpN9H+nV9lChoBkdAShf9R77bc2gHS4doCEdAoICHYJ3PiXV9lChoBkdAc5t6v7m+02gHS8doCEdAoICXldTo+3V9lChoBkdAc8UWZJCjUWgHS7ZoCEdAoICfGS6lL3V9lChoBkdAcEwVawD/2mgHS6hoCEdAoIDvIhhYvHV9lChoBkdAb6KNnXd0rGgHS6RoCEdAoIFnFkxyn3V9lChoBkdAcPtPiDM/yGgHS6JoCEdAoIGA1Nxlx3V9lChoBkdAcIM2P1ct5GgHS5JoCEdAoIGgR5C4SnV9lChoBkdAcfhEq2Bre2gHS45oCEdAoIHGzSkTH3V9lChoBkdAcrtZyuIRAmgHS5poCEdAoIHxBiTdL3V9lChoBkdAcxRkupS75GgHS9hoCEdAoIJecFyJbnV9lChoBkdActw+bVjI72gHS9poCEdAoIJ4JLM9sHV9lChoBkdAckAoysS00GgHS7hoCEdAoIKCEi+tbXV9lChoBkdAcaJuqm0mdGgHS7doCEdAoIKjMTviLnV9lChoBkdAbvp8twrDqGgHS65oCEdAoIKr61stTXV9lChoBkdAcIFZGrjo6mgHS6hoCEdAoIKqKBNEgHV9lChoBkdAcUS7OVxCIGgHS8doCEdAoIK6O938oHV9lChoBkdAcUxdweeWfWgHS8JoCEdAoIMVB0IToXV9lChoBkdAcymXNke6qmgHS9NoCEdAoIPl7laKUHV9lChoBkdAb+hgF5fMOmgHS5toCEdAoIRY6jnFHnV9lChoBkdAcr/9r433pWgHS8ZoCEdAoISBaRp1zXV9lChoBkdActUnc+JP7GgHS8NoCEdAoISfwkPcz3V9lChoBkdActQv3JxNqWgHS9poCEdAoIS2qDK5kXV9lChoBkdAcdQhnrY5DWgHS85oCEdAoIUKcf/3nXV9lChoBkdAZbkHqu8sc2gHTegDaAhHQKCFXt0FKTV1fZQoaAZHQHGFIEW69TRoB0u7aAhHQKCFgqZML4N1fZQoaAZHQHEonZbpu/FoB0unaAhHQKCFlGjsUqR1fZQoaAZHQHLLVyR0U49oB0u7aAhHQKCF2YrrgO11fZQoaAZHQHGgzGLk0aZoB0u8aAhHQKCF6H31zyV1fZQoaAZHQHK1JVjqfOFoB0vaaAhHQKCGJ1wHZ9N1fZQoaAZHQHLEqMrEtNBoB0vhaAhHQKCGUO+7Dl51fZQoaAZHQHLctalk6LhoB0u9aAhHQKCGZ/PPcBV1fZQoaAZHQGOWATyrgfloB03oA2gIR0CghwtKh+OPdX2UKGgGR0Bvo1HH3lCDaAdLnWgIR0Cgh0+lKsdUdX2UKGgGR0Byfwi0OVgQaAdL0mgIR0Cgh4hLf1pTdX2UKGgGR0Bx8hb9qDbraAdLhmgIR0Cgh8TDGcWkdX2UKGgGR0BxiS704BFNaAdLwGgIR0Cgh8r+o99udX2UKGgGR0ByX8ebNKRMaAdLlGgIR0Cgh9zzND+jdX2UKGgGR0BzXQV+I/JOaAdLvWgIR0Cgh/KjSG8FdX2UKGgGR0ByES7pV0cPaAdL1GgIR0Cgh/8hTwUhdX2UKGgGR0BwzsAWBSUDaAdLmGgIR0CgiFVAZ88cdX2UKGgGR0BwQ82YOUdJaAdL72gIR0CgiMfU4JeFdX2UKGgGR0By2btZ3cHoaAdLwmgIR0CgiN0NSZSfdX2UKGgGR0ByqTmRvFWGaAdLumgIR0CgiO/kmx+sdX2UKGgGR0BxgVzOoo/iaAdLyGgIR0CgiTYwh4dIdX2UKGgGR0Bx5IbGWD6FaAdL2mgIR0CgiXtWuHN5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 510, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
model-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc30d61885464bb7935e2bfb70123ebe651d8088f03b6dc1d00b04be5ea7d3a0
|
3 |
+
size 146610
|
model-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
model-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eda34f03880>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eda34f03910>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eda34f039a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eda34f03a30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eda34f03ac0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eda34f03b50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eda34f03be0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eda34f03c70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eda34f03d00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eda34f03d90>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eda34f03e20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eda34f03eb0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7eda34efe340>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 458752,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690117914821245918,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAmhb17WpG6sjDRtiYDs7EOp4A6OxD1NQAAgD8AAIA/RoERvskoUD3TVYI+xEDavoMwED1+TxQ9AAAAAAAAAADNVPk9n9ORu5IPVr7JKUy+Gz9CvE68nzsAAAAAAAAAAPMa0j19lj0/fQL8PZlESr+1fcY9zYc2PQAAAAAAAAAAzagZPk37oz85rQg/fKQPv9f2XD76dls+AAAAAAAAAADACUE+TJnZPq+dDb4Ey/W+QIf/PdalI74AAAAAAAAAADrnFT64WKu77XXtOefKPbfyBAS95MgOuQAAgD8AAIA/Js6jPZw+Fbz8Nba9qdsjPfDpcz2c1gS+AACAPwAAgD8aF8o9KXg+ugqfC7SeFFWv+pBeOpZ4kjMAAIA/AACAPwAXfj3hrLa6yIY2vWBGSzXktoY5CtWrtAAAgD8AAIA/Ji6YPY9mQLoe0TQyOk3zsIHoCbq2jnmyAACAPwAAgD8aOQc+hUaYu5rEsDpkyG24ic8EvSKY4rkAAIA/AACAP83etTz7zq8/7508P8GjFL8GFaG8ARy5vQAAAAAAAAAAlu2aPpudfD/68sM+B9wUv+jV9j72vBA9AAAAAAAAAABzwwM+k7lxP15Tmz1TqC2/549EPkA9STwAAAAAAAAAAE0eBj2PYim6moCRtdHTsbDy4v461t63NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.541248,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNm7YTTOPiMAWyUS6OMAXSUR0CgeJ0Jv5xjdX2UKGgGR0ByGp/OMVDbaAdLiWgIR0CgeJ9To+wDdX2UKGgGR0Byxv+jua4MaAdLvmgIR0CgeMUuctoSdX2UKGgGR0Byp8TrVvuPaAdL1WgIR0CgeMTbvgFYdX2UKGgGR0ByTnV4HHFQaAdLumgIR0CgeNDWsijddX2UKGgGR0Bx8GLWI42kaAdLy2gIR0CgeRz6zmfXdX2UKGgGR0BxDSIAOrhjaAdLqGgIR0CgeSKo60Y1dX2UKGgGR0By42hIvrWzaAdL42gIR0CgeYt+LFXJdX2UKGgGR0Bv+1V1fVqfaAdLrGgIR0CgeZW5H3DfdX2UKGgGR0ByQDz19ORDaAdLx2gIR0CgeZw8wHqvdX2UKGgGR0Bt26yY5T60aAdLqGgIR0CgebMUZeiSdX2UKGgGR0Bxha5H3DekaAdLvmgIR0CgeeRWtEG8dX2UKGgGR0By8GCcwxnGaAdLoGgIR0CgejRaX8fndX2UKGgGR0BvOvlXA/LUaAdLomgIR0Cgek6DGtITdX2UKGgGR0Bx6n6be/HpaAdLvGgIR0CgelQOWjXWdX2UKGgGR0Bv3mrlvIfbaAdLqWgIR0Cgepts3yZsdX2UKGgGR0BwtAg8r7O3aAdLpWgIR0Cgep0x/NJOdX2UKGgGR0Bw+PAsTWXkaAdLx2gIR0Cgesj9OymidX2UKGgGR0BzxcBp5/smaAdLuWgIR0Cgesj94u9OdX2UKGgGR0Bx4Ygkka/AaAdLsWgIR0CgexSNOuaGdX2UKGgGR0BxqeY5T6zmaAdLn2gIR0Cge2752yLRdX2UKGgGR0ByRhj+aScLaAdL5mgIR0Cge8gNXo1UdX2UKGgGR0ByGGfGuLaVaAdLyWgIR0Cge+GkFfRedX2UKGgGR0BwY+tJWeYlaAdLqWgIR0Cge+L4WUKRdX2UKGgGR0Bx6qjsUqQSaAdLiGgIR0Cge+6OxSpBdX2UKGgGR0Bl5loHs1KoaAdN6ANoCEdAoHvyhN/OMXV9lChoBkdAcia8baRISWgHS9JoCEdAoHwGLBKtgnV9lChoBkdAcbI0g8r7O2gHS6NoCEdAoHwfOW0JGHV9lChoBkdAbyqu7HyVfWgHS5FoCEdAoHxO0CzTnnV9lChoBkdAcpH24/eLvWgHS7JoCEdAoHxhzBAOa3V9lChoBkdAcn7vS+g132gHS5xoCEdAoHyVH8TBZnV9lChoBkdAcQeJ+lTFVGgHS7ZoCEdAoHyxtWMjvHV9lChoBkdAcp5bFjurqGgHS9FoCEdAoH0yPdVNpXV9lChoBkdAcbtwIdELIGgHS5VoCEdAoH2LxI8QqnV9lChoBkdAcqx44Ia99WgHS9ZoCEdAoH2P20zCUHV9lChoBkdAcc6sAvL5h2gHS5loCEdAoH2aFVT723V9lChoBkdAbyb18LKFI2gHS59oCEdAoH221IAfdXV9lChoBkdAbyK6p5u63GgHS5doCEdAoH2400m+kHV9lChoBkdAcgwIS13MZGgHS6loCEdAoH3Xz4DcM3V9lChoBkdAcmOIyj59E2gHS9RoCEdAoH3cw1zhgnV9lChoBkdAcnkyLhrFfmgHS49oCEdAoH4MLYwqRXV9lChoBkdAcdZMWGh24mgHS9toCEdAoH5MVgx8D3V9lChoBkdAcT/00WM0g2gHS4toCEdAoH5dLHuJDXV9lChoBkdAcsXgCwKSgWgHS+RoCEdAoH7ORzRx+HV9lChoBkdAcohE12q1gGgHS9RoCEdAoH7XsNUfgnV9lChoBkdAcrQR4yGi6GgHS69oCEdAoH9g0/GEPHV9lChoBkdAckoKNQ0oB2gHS+5oCEdAoH+C8DjioHV9lChoBkdAcu2wRoRIz2gHS6loCEdAoH+u4qgAZXV9lChoBkdAb7yEyLyc1GgHS6FoCEdAoH/Csr/bTXV9lChoBkdAbzD4oJAt4GgHS51oCEdAoH/XkLhJiHV9lChoBkdAcNcRgqmTDGgHS7hoCEdAoIALNnoPkXV9lChoBkdAcY+0CRwIdGgHS8JoCEdAoIAM7dSEUXV9lChoBkdAcssANoakymgHS9VoCEdAoIA76pHZsnV9lChoBkdAc5jl2NedCmgHS71oCEdAoIBF8uzyBnV9lChoBkdAcj/Jz1bqyGgHS51oCEdAoIBhpN9H+nV9lChoBkdAShf9R77bc2gHS4doCEdAoICHYJ3PiXV9lChoBkdAc5t6v7m+02gHS8doCEdAoICXldTo+3V9lChoBkdAc8UWZJCjUWgHS7ZoCEdAoICfGS6lL3V9lChoBkdAcEwVawD/2mgHS6hoCEdAoIDvIhhYvHV9lChoBkdAb6KNnXd0rGgHS6RoCEdAoIFnFkxyn3V9lChoBkdAcPtPiDM/yGgHS6JoCEdAoIGA1Nxlx3V9lChoBkdAcIM2P1ct5GgHS5JoCEdAoIGgR5C4SnV9lChoBkdAcfhEq2Bre2gHS45oCEdAoIHGzSkTH3V9lChoBkdAcrtZyuIRAmgHS5poCEdAoIHxBiTdL3V9lChoBkdAcxRkupS75GgHS9hoCEdAoIJecFyJbnV9lChoBkdActw+bVjI72gHS9poCEdAoIJ4JLM9sHV9lChoBkdAckAoysS00GgHS7hoCEdAoIKCEi+tbXV9lChoBkdAcaJuqm0mdGgHS7doCEdAoIKjMTviLnV9lChoBkdAbvp8twrDqGgHS65oCEdAoIKr61stTXV9lChoBkdAcIFZGrjo6mgHS6hoCEdAoIKqKBNEgHV9lChoBkdAcUS7OVxCIGgHS8doCEdAoIK6O938oHV9lChoBkdAcUxdweeWfWgHS8JoCEdAoIMVB0IToXV9lChoBkdAcymXNke6qmgHS9NoCEdAoIPl7laKUHV9lChoBkdAb+hgF5fMOmgHS5toCEdAoIRY6jnFHnV9lChoBkdAcr/9r433pWgHS8ZoCEdAoISBaRp1zXV9lChoBkdActUnc+JP7GgHS8NoCEdAoISfwkPcz3V9lChoBkdActQv3JxNqWgHS9poCEdAoIS2qDK5kXV9lChoBkdAcdQhnrY5DWgHS85oCEdAoIUKcf/3nXV9lChoBkdAZbkHqu8sc2gHTegDaAhHQKCFXt0FKTV1fZQoaAZHQHGFIEW69TRoB0u7aAhHQKCFgqZML4N1fZQoaAZHQHEonZbpu/FoB0unaAhHQKCFlGjsUqR1fZQoaAZHQHLLVyR0U49oB0u7aAhHQKCF2YrrgO11fZQoaAZHQHGgzGLk0aZoB0u8aAhHQKCF6H31zyV1fZQoaAZHQHK1JVjqfOFoB0vaaAhHQKCGJ1wHZ9N1fZQoaAZHQHLEqMrEtNBoB0vhaAhHQKCGUO+7Dl51fZQoaAZHQHLctalk6LhoB0u9aAhHQKCGZ/PPcBV1fZQoaAZHQGOWATyrgfloB03oA2gIR0CghwtKh+OPdX2UKGgGR0Bvo1HH3lCDaAdLnWgIR0Cgh0+lKsdUdX2UKGgGR0Byfwi0OVgQaAdL0mgIR0Cgh4hLf1pTdX2UKGgGR0Bx8hb9qDbraAdLhmgIR0Cgh8TDGcWkdX2UKGgGR0BxiS704BFNaAdLwGgIR0Cgh8r+o99udX2UKGgGR0ByX8ebNKRMaAdLlGgIR0Cgh9zzND+jdX2UKGgGR0BzXQV+I/JOaAdLvWgIR0Cgh/KjSG8FdX2UKGgGR0ByES7pV0cPaAdL1GgIR0Cgh/8hTwUhdX2UKGgGR0BwzsAWBSUDaAdLmGgIR0CgiFVAZ88cdX2UKGgGR0BwQ82YOUdJaAdL72gIR0CgiMfU4JeFdX2UKGgGR0By2btZ3cHoaAdLwmgIR0CgiN0NSZSfdX2UKGgGR0ByqTmRvFWGaAdLumgIR0CgiO/kmx+sdX2UKGgGR0BxgVzOoo/iaAdLyGgIR0CgiTYwh4dIdX2UKGgGR0Bx5IbGWD6FaAdL2mgIR0CgiXtWuHN5dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 510,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
model-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d920938dba0eae77859262b9594114a817230f90a17a28a58d1985b36ee5a391
|
3 |
+
size 87929
|
model-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b95386693280573d1a818d492b8e89ac5f8311a882b6aadc1d85c22d2bcd960
|
3 |
+
size 43329
|
model-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
model-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (185 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 279.2033533, "std_reward": 22.758387469074513, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-23T13:20:08.125313"}
|