|
|
""" |
|
|
Helion-V2 Inference Script |
|
|
Provides optimized inference with various sampling strategies. |
|
|
""" |
|
|
|
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
import argparse |
|
|
from typing import Optional, List, Dict |
|
|
import time |
|
|
|
|
|
|
|
|
class HelionInference: |
|
|
"""Inference wrapper for Helion-V2 model.""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model_name: str = "DeepXR/Helion-V2", |
|
|
device: str = "auto", |
|
|
load_in_4bit: bool = False, |
|
|
load_in_8bit: bool = False, |
|
|
use_flash_attention: bool = True, |
|
|
): |
|
|
""" |
|
|
Initialize the Helion-V2 model for inference. |
|
|
|
|
|
Args: |
|
|
model_name: HuggingFace model identifier |
|
|
device: Device placement ('auto', 'cuda', 'cpu') |
|
|
load_in_4bit: Use 4-bit quantization |
|
|
load_in_8bit: Use 8-bit quantization |
|
|
use_flash_attention: Enable Flash Attention 2 |
|
|
""" |
|
|
self.model_name = model_name |
|
|
self.device = device |
|
|
|
|
|
print(f"Loading tokenizer from {model_name}...") |
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
quantization_config = None |
|
|
if load_in_4bit: |
|
|
quantization_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_compute_dtype=torch.float16, |
|
|
bnb_4bit_use_double_quant=True, |
|
|
bnb_4bit_quant_type="nf4" |
|
|
) |
|
|
elif load_in_8bit: |
|
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
|
|
print(f"Loading model from {model_name}...") |
|
|
model_kwargs = { |
|
|
"device_map": device, |
|
|
"torch_dtype": torch.float16, |
|
|
"quantization_config": quantization_config, |
|
|
} |
|
|
|
|
|
if use_flash_attention and not (load_in_4bit or load_in_8bit): |
|
|
model_kwargs["attn_implementation"] = "flash_attention_2" |
|
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
**model_kwargs |
|
|
) |
|
|
|
|
|
self.model.eval() |
|
|
print("Model loaded successfully!") |
|
|
|
|
|
def generate( |
|
|
self, |
|
|
prompt: str, |
|
|
max_new_tokens: int = 512, |
|
|
temperature: float = 0.7, |
|
|
top_p: float = 0.9, |
|
|
top_k: int = 50, |
|
|
repetition_penalty: float = 1.1, |
|
|
do_sample: bool = True, |
|
|
num_return_sequences: int = 1, |
|
|
) -> List[str]: |
|
|
""" |
|
|
Generate text from a prompt. |
|
|
|
|
|
Args: |
|
|
prompt: Input text prompt |
|
|
max_new_tokens: Maximum tokens to generate |
|
|
temperature: Sampling temperature (higher = more random) |
|
|
top_p: Nucleus sampling threshold |
|
|
top_k: Top-k sampling parameter |
|
|
repetition_penalty: Penalty for repeating tokens |
|
|
do_sample: Use sampling vs greedy decoding |
|
|
num_return_sequences: Number of sequences to generate |
|
|
|
|
|
Returns: |
|
|
List of generated text strings |
|
|
""" |
|
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = self.model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=max_new_tokens, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
top_k=top_k, |
|
|
repetition_penalty=repetition_penalty, |
|
|
do_sample=do_sample, |
|
|
num_return_sequences=num_return_sequences, |
|
|
pad_token_id=self.tokenizer.eos_token_id, |
|
|
) |
|
|
|
|
|
generation_time = time.time() - start_time |
|
|
tokens_generated = outputs.shape[1] - inputs["input_ids"].shape[1] |
|
|
tokens_per_second = tokens_generated / generation_time |
|
|
|
|
|
results = [] |
|
|
for output in outputs: |
|
|
text = self.tokenizer.decode(output, skip_special_tokens=True) |
|
|
results.append(text) |
|
|
|
|
|
print(f"\nGeneration stats:") |
|
|
print(f" Tokens generated: {tokens_generated}") |
|
|
print(f" Time: {generation_time:.2f}s") |
|
|
print(f" Speed: {tokens_per_second:.2f} tokens/s") |
|
|
|
|
|
return results |
|
|
|
|
|
def chat( |
|
|
self, |
|
|
messages: List[Dict[str, str]], |
|
|
max_new_tokens: int = 512, |
|
|
temperature: float = 0.7, |
|
|
top_p: float = 0.9, |
|
|
**kwargs |
|
|
) -> str: |
|
|
""" |
|
|
Generate response in chat format. |
|
|
|
|
|
Args: |
|
|
messages: List of message dicts with 'role' and 'content' |
|
|
max_new_tokens: Maximum tokens to generate |
|
|
temperature: Sampling temperature |
|
|
top_p: Nucleus sampling threshold |
|
|
**kwargs: Additional generation parameters |
|
|
|
|
|
Returns: |
|
|
Generated response text |
|
|
""" |
|
|
input_text = self.tokenizer.apply_chat_template( |
|
|
messages, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True |
|
|
) |
|
|
|
|
|
results = self.generate( |
|
|
input_text, |
|
|
max_new_tokens=max_new_tokens, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
**kwargs |
|
|
) |
|
|
|
|
|
|
|
|
full_text = results[0] |
|
|
if "<|assistant|>" in full_text: |
|
|
response = full_text.split("<|assistant|>")[-1].split("<|end|>")[0].strip() |
|
|
else: |
|
|
response = full_text[len(input_text):].strip() |
|
|
|
|
|
return response |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description="Helion-V2 Inference") |
|
|
parser.add_argument( |
|
|
"--model", |
|
|
type=str, |
|
|
default="DeepXR/Helion-V2", |
|
|
help="Model name or path" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--prompt", |
|
|
type=str, |
|
|
required=True, |
|
|
help="Input prompt" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-tokens", |
|
|
type=int, |
|
|
default=512, |
|
|
help="Maximum tokens to generate" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--temperature", |
|
|
type=float, |
|
|
default=0.7, |
|
|
help="Sampling temperature" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--top-p", |
|
|
type=float, |
|
|
default=0.9, |
|
|
help="Nucleus sampling threshold" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--top-k", |
|
|
type=int, |
|
|
default=50, |
|
|
help="Top-k sampling" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--repetition-penalty", |
|
|
type=float, |
|
|
default=1.1, |
|
|
help="Repetition penalty" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--load-in-4bit", |
|
|
action="store_true", |
|
|
help="Load model in 4-bit precision" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--load-in-8bit", |
|
|
action="store_true", |
|
|
help="Load model in 8-bit precision" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--device", |
|
|
type=str, |
|
|
default="auto", |
|
|
help="Device placement" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--chat-mode", |
|
|
action="store_true", |
|
|
help="Use chat format" |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
inference = HelionInference( |
|
|
model_name=args.model, |
|
|
device=args.device, |
|
|
load_in_4bit=args.load_in_4bit, |
|
|
load_in_8bit=args.load_in_8bit, |
|
|
) |
|
|
|
|
|
|
|
|
if args.chat_mode: |
|
|
messages = [ |
|
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
|
{"role": "user", "content": args.prompt} |
|
|
] |
|
|
response = inference.chat( |
|
|
messages, |
|
|
max_new_tokens=args.max_tokens, |
|
|
temperature=args.temperature, |
|
|
top_p=args.top_p, |
|
|
top_k=args.top_k, |
|
|
repetition_penalty=args.repetition_penalty, |
|
|
) |
|
|
print(f"\nAssistant: {response}") |
|
|
else: |
|
|
results = inference.generate( |
|
|
args.prompt, |
|
|
max_new_tokens=args.max_tokens, |
|
|
temperature=args.temperature, |
|
|
top_p=args.top_p, |
|
|
top_k=args.top_k, |
|
|
repetition_penalty=args.repetition_penalty, |
|
|
) |
|
|
print(f"\nGenerated text:\n{results[0]}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |