|
import json |
|
from argparse import ArgumentParser |
|
|
|
import datasets |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, BatchEncoding |
|
|
|
""" |
|
Usage examples (with the best batch sizes on A100-80GB-400W) |
|
============================================================ |
|
python -m benchmark_hf_model --model_name_or_path="Deci/DeciLM-7B" --batch_size=352 |
|
python -m benchmark_hf_model --model_name_or_path="mistralai/Mistral-7B-v0.1" --batch_size=192 --model_kwargs_json='{"use_flash_attention_2": true}' |
|
python -m benchmark_hf_model --model_name_or_path="meta-llama/Llama-2-7b-hf" --batch_size=48 --model_kwargs_json='{"use_flash_attention_2": true}' |
|
""" |
|
|
|
|
|
def parse_args(): |
|
parser = ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_name_or_path", |
|
type=str, |
|
required=True, |
|
) |
|
parser.add_argument( |
|
"--warmup_iters", |
|
type=int, |
|
default=10, |
|
) |
|
parser.add_argument( |
|
"--iterations", |
|
type=int, |
|
default=5, |
|
) |
|
parser.add_argument( |
|
"--batch_size", |
|
type=int, |
|
default=32, |
|
) |
|
parser.add_argument( |
|
"--prompt_length", |
|
type=int, |
|
default=512, |
|
) |
|
parser.add_argument( |
|
"--max_new_tokens", |
|
type=int, |
|
default=512, |
|
) |
|
parser.add_argument( |
|
"--precision", |
|
type=str, |
|
default="bf16", |
|
help="Model precision, from: fp32, fp16 or bf16", |
|
) |
|
parser.add_argument( |
|
"--model_kwargs_json", |
|
type=str, |
|
default=None, |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
transformers.logging.set_verbosity_error() |
|
datasets.logging.set_verbosity_error() |
|
|
|
dict_precisions = { |
|
"fp32": torch.float32, |
|
"fp16": torch.float16, |
|
"bf16": torch.bfloat16, |
|
} |
|
if args.precision not in dict_precisions: |
|
raise ValueError( |
|
f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16" |
|
) |
|
dtype = dict_precisions[args.precision] |
|
|
|
model_kwargs = {} |
|
if args.model_kwargs_json is not None: |
|
model_kwargs = json.loads(args.model_kwargs_json) |
|
|
|
print(f"loading model...") |
|
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, trust_remote_code=True, |
|
torch_dtype=dtype, **model_kwargs) |
|
try: |
|
print(model.model.layers[0].self_attn) |
|
except: |
|
print("couldn't print the model's attention module") |
|
|
|
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) |
|
model.cuda() |
|
model.eval() |
|
|
|
prompt = torch.ones(args.prompt_length, dtype=torch.long) |
|
inputs = BatchEncoding({"input_ids": prompt.repeat(args.batch_size, 1)}) |
|
inputs = inputs.to(model.device) |
|
|
|
|
|
print(f"warming up for {args.warmup_iters} iterations...") |
|
for _ in range(args.warmup_iters): |
|
with torch.no_grad(): |
|
_ = model.generate( |
|
**inputs, |
|
max_new_tokens=1, |
|
do_sample=False, |
|
eos_token_id=-1234, |
|
) |
|
print('finished warmup') |
|
torch.cuda.synchronize() |
|
|
|
print( |
|
f"prefill ({args.prompt_length} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}) + generation ({args.max_new_tokens} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}):") |
|
tokens_generated = args.max_new_tokens * args.batch_size |
|
prefill_and_generation = [] |
|
for gen_iter in range(args.iterations): |
|
starter.record() |
|
with torch.no_grad(): |
|
_ = model.generate( |
|
**inputs, |
|
max_new_tokens=args.max_new_tokens, |
|
do_sample=False, |
|
eos_token_id=-1234, |
|
) |
|
ender.record() |
|
torch.cuda.synchronize() |
|
t = starter.elapsed_time(ender) / 1000 |
|
prefill_and_generation.append(t) |
|
print(f" iter {gen_iter + 1}: {t:.03f} sec total, {tokens_generated / t:.02f} generated tokens/sec") |
|
aver = sum(prefill_and_generation) / len(prefill_and_generation) |
|
print(f" average: {aver:.03f} sec total, {tokens_generated / aver:.02f} generated tokens/sec") |
|
print(f"These results are obtained for model '{args.model_name_or_path}' with {args.batch_size=}.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|