NajeebDeci
commited on
Commit
•
5c63f79
1
Parent(s):
3fc5339
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,171 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- code generation
|
5 |
+
metrics:
|
6 |
+
- code_eval
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
inference: true
|
9 |
+
widget:
|
10 |
+
- text: 'def print_hello_world():'
|
11 |
+
example_title: Hello world
|
12 |
+
group: Python
|
13 |
+
model-index:
|
14 |
+
- name: StarCoder
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: text-generation
|
18 |
+
dataset:
|
19 |
+
type: nuprl/MultiPL-E
|
20 |
+
name: MultiPL-HumanEval (Python)
|
21 |
+
metrics:
|
22 |
+
- name: pass@1
|
23 |
+
type: pass@1
|
24 |
+
value: 0.191
|
25 |
+
verified: false
|
26 |
+
- task:
|
27 |
+
type: text-generation
|
28 |
+
dataset:
|
29 |
+
type: nuprl/MultiPL-E
|
30 |
+
name: MultiPL-HumanEval (JavaScript)
|
31 |
+
metrics:
|
32 |
+
- name: pass@1
|
33 |
+
type: pass@1
|
34 |
+
value: 0.184
|
35 |
+
verified: false
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
dataset:
|
39 |
+
type: nuprl/MultiPL-E
|
40 |
+
name: MultiPL-HumanEval (Java)
|
41 |
+
metrics:
|
42 |
+
- name: pass@1
|
43 |
+
type: pass@1
|
44 |
+
value: 0.166
|
45 |
+
verified: false
|
46 |
+
datasets:
|
47 |
+
- bigcode/starcoderdata
|
48 |
---
|
49 |
+
|
50 |
+
# Model Card for DeciCoder 1B
|
51 |
+
|
52 |
+
DeciCoder 1B is a 1 billion parameter decoder-only code completion model
|
53 |
+
trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata).
|
54 |
+
The model uses Grouped Query Attention and has a context window of 2048
|
55 |
+
tokens. It was trained using a Fill-in-the-Middle training objective. The model's
|
56 |
+
architecture was generated by Deci's proprietary Neural Architecture
|
57 |
+
Search-based technology, AutoNAC.
|
58 |
+
|
59 |
+
## Model Details
|
60 |
+
|
61 |
+
- **Developed by:** Deci
|
62 |
+
- **Model type:** DeciCoder is an auto-regressive language model based on the transformer decoder architecture, using Grouped Query Attention.
|
63 |
+
- **Language(s):** Python, Java, JavaScript
|
64 |
+
- **License:** Model checkpoints are licensed under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
65 |
+
|
66 |
+
## Model Architecture
|
67 |
+
|
68 |
+
| Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads | Hidden Size |
|
69 |
+
|:----------|:----------|:----------|:----------|:----------|:----------|
|
70 |
+
| 1.1B | 20 | 32 | 2048 | 4 | 2048 | |
|
71 |
+
|
72 |
+
|
73 |
+
- **Decoder layer:** Grouped Query Attention [Ainslie et al., 2023](https://arxiv.org/abs/2305.13245)
|
74 |
+
- **Position Embeddings:** Rotary Position Embeddings [Su et al., 2021](https://arxiv.org/abs/2104.09864)
|
75 |
+
|
76 |
+
## Uses
|
77 |
+
|
78 |
+
The model is intended to do single/multiline code completion from a
|
79 |
+
context window of up to 2048k tokens. It is *not* an instruction model
|
80 |
+
and commands like \"Write a function that computes the absolute value of
|
81 |
+
an integer,\" won't yield the desired results. A more effective approach
|
82 |
+
is to frame instructions in the style of source code comments (e.g. \#
|
83 |
+
this function calculates the absolute value of an integer) or to present
|
84 |
+
a function signature and docstring, enabling the model to complete the
|
85 |
+
function's body.
|
86 |
+
|
87 |
+
### How to Use
|
88 |
+
|
89 |
+
```bibtex
|
90 |
+
# pip install -q transformers
|
91 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
92 |
+
|
93 |
+
checkpoint = "Deci/DeciCoder-1b"
|
94 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
95 |
+
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
97 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)
|
98 |
+
|
99 |
+
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
|
100 |
+
outputs = model.generate(inputs)
|
101 |
+
print(tokenizer.decode(outputs[0]))
|
102 |
+
```
|
103 |
+
|
104 |
+
### Attribution
|
105 |
+
|
106 |
+
DeciCoder was trained on StarCoder Training Dataset, filtered for
|
107 |
+
Python, Java, and Javascript code. For additional information, please
|
108 |
+
refer to [https://huggingface.co/datasets/bigcode/starcoderdata](https://huggingface.co/datasets/bigcode/starcoderdata).
|
109 |
+
|
110 |
+
### Limitations
|
111 |
+
|
112 |
+
The model has undergone training with source code from Python, Java, and
|
113 |
+
JavaScript. While the primary language in the source is English, it does
|
114 |
+
contain other languages. Therefore, the model can produce code snippets
|
115 |
+
given some context. However, there\'s no assurance that the resulting
|
116 |
+
code will function as expected. It might be suboptimal, contain bugs, or
|
117 |
+
even exploits.
|
118 |
+
|
119 |
+
## Training Details
|
120 |
+
|
121 |
+
### Training Data
|
122 |
+
|
123 |
+
DeciCoder was trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata)
|
124 |
+
|
125 |
+
|
126 |
+
### Training Procedure
|
127 |
+
|
128 |
+
- **Warm-Up Steps**: 9000
|
129 |
+
- **Total Training Steps**: 284k
|
130 |
+
- **Total Tokenes**: 446B
|
131 |
+
- **Global Batch Size**: 768
|
132 |
+
- **Optimizer**: AdamW
|
133 |
+
- **Optimizer Parameters**: beta1=0.9, beta2=0.95
|
134 |
+
- **Weight Decay**: 0.1
|
135 |
+
- **Learning Rate**: 4e-4
|
136 |
+
- **Learning Rate Schedule**: cosine
|
137 |
+
|
138 |
+
## Evaluation
|
139 |
+
|
140 |
+
Below are DeciCoder's pass@1 on MultiPL HumanEval scores
|
141 |
+
|
142 |
+
| Python | JavaScript | Java |
|
143 |
+
|:----------|:----------|:----------|
|
144 |
+
| 19.1% | 18.4% | 16.6% |
|
145 |
+
|
146 |
+
|
147 |
+
### Runtime Benchmarks
|
148 |
+
|
149 |
+
|Inference Tool/Hardware | A10G (tokens/sec) | A100 (tokens/sec) |
|
150 |
+
|:----------|:----------|:----------|
|
151 |
+
| HF Inference Endpoints | 1,364.2 | 3,244.4 |
|
152 |
+
| Infery LLM | 3,889.3 | 11,676.8 |
|
153 |
+
|
154 |
+
## Documentation
|
155 |
+
|
156 |
+
- [Notebook](https://colab.research.google.com/drive/1JCxvBsWCZKHfIcHSMVf7GZCs3ClMQPjs)
|
157 |
+
- Blog post: [Introducing DeciCoder: The New Gold Standard in Efficient and Accurate Code Generation](https://deci.ai/blog/decicoder-efficient-and-accurate-code-generation-llm/)
|
158 |
+
- Questions:Feel free to contact us via our [Discord Community!](https://discord.com/invite/p9ecgRhDR8/)
|
159 |
+
|
160 |
+
## How to Cite
|
161 |
+
|
162 |
+
Please cite this model using this format.
|
163 |
+
|
164 |
+
```bibtex
|
165 |
+
@misc{DeciFoundationModels,
|
166 |
+
title = {DeciCoder},
|
167 |
+
author = {DeciAI Research Team},
|
168 |
+
year = {2023}
|
169 |
+
url={[https://huggingface.co/deci/decicoder-1b](https://huggingface.co/deci/decicoder-1b)},
|
170 |
+
}
|
171 |
+
```
|