Upload folder using huggingface_hub
Browse files- README.md +183 -98
- adapter_config.json +7 -1
- adapter_model.safetensors +3 -0
README.md
CHANGED
@@ -1,117 +1,202 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: DavidLanz/Llama2-tw-7B-v2.0.1-chat
|
4 |
-
inference: false
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
license: llama2
|
8 |
-
model_creator: Meta Llama 2
|
9 |
-
model_name: Llama 2 13B Chat
|
10 |
-
model_type: llama
|
11 |
-
pipeline_tag: text-generation
|
12 |
-
quantized_by: QLoRA
|
13 |
-
tags:
|
14 |
-
- facebook
|
15 |
-
- meta
|
16 |
-
- pytorch
|
17 |
-
- llama
|
18 |
-
- llama-2
|
19 |
---
|
20 |
|
21 |
# Model Card for Model ID
|
22 |
|
23 |
-
|
24 |
|
25 |
-
Disclaimer: This model is for a time series problem on LLM performance, and it's not for investment advice; any prediction results are not a basis for investment reference.
|
26 |
|
27 |
-
## Model Details
|
28 |
|
29 |
-
|
30 |
|
31 |
### Model Description
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Uses
|
36 |
|
37 |
-
|
38 |
-
import torch
|
39 |
-
from peft import LoraConfig, PeftModel
|
40 |
-
|
41 |
-
from transformers import (
|
42 |
-
AutoModelForCausalLM,
|
43 |
-
AutoTokenizer,
|
44 |
-
BitsAndBytesConfig,
|
45 |
-
HfArgumentParser,
|
46 |
-
TrainingArguments,
|
47 |
-
TextStreamer,
|
48 |
-
pipeline,
|
49 |
-
logging,
|
50 |
-
)
|
51 |
-
|
52 |
-
device_map = {"": 0}
|
53 |
-
use_4bit = True
|
54 |
-
bnb_4bit_compute_dtype = "float16"
|
55 |
-
bnb_4bit_quant_type = "nf4"
|
56 |
-
use_nested_quant = False
|
57 |
-
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
58 |
-
|
59 |
-
bnb_config = BitsAndBytesConfig(
|
60 |
-
load_in_4bit=use_4bit,
|
61 |
-
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
62 |
-
bnb_4bit_compute_dtype=compute_dtype,
|
63 |
-
bnb_4bit_use_double_quant=use_nested_quant,
|
64 |
-
)
|
65 |
-
|
66 |
-
based_model_path = "DavidLanz/Llama2-tw-7B-v2.0.1-chat"
|
67 |
-
adapter_path = "DavidLanz/llama2_7b_taiwan_btc_qlora"
|
68 |
-
|
69 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
70 |
-
based_model_path,
|
71 |
-
low_cpu_mem_usage=True,
|
72 |
-
# load_in_4bit=True,
|
73 |
-
return_dict=True,
|
74 |
-
quantization_config=bnb_config,
|
75 |
-
torch_dtype=torch.float16,
|
76 |
-
device_map=device_map,
|
77 |
-
)
|
78 |
-
model = PeftModel.from_pretrained(base_model, adapter_path)
|
79 |
-
|
80 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
|
81 |
-
tokenizer.pad_token = tokenizer.eos_token
|
82 |
-
tokenizer.padding_side = "right"
|
83 |
-
|
84 |
-
from transformers import pipeline
|
85 |
-
|
86 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto")
|
87 |
-
messages = [
|
88 |
-
{
|
89 |
-
"role": "system",
|
90 |
-
"content": "你是一位專業的股票分析師",
|
91 |
-
},
|
92 |
-
{"role": "user", "content": "昨日開盤價為42950.02,最高價為43581.3,最低價為40610.0,收盤價為41319.11,交易量為3175.25156。請預測今日股票的開盤價?"},
|
93 |
-
]
|
94 |
-
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
95 |
-
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
96 |
-
print(outputs[0]["generated_text"])
|
97 |
-
```
|
98 |
-
|
99 |
-
## Training procedure
|
100 |
-
|
101 |
-
|
102 |
-
The following `bitsandbytes` quantization config was used during training:
|
103 |
-
- quant_method: bitsandbytes
|
104 |
-
- load_in_8bit: False
|
105 |
-
- load_in_4bit: True
|
106 |
-
- llm_int8_threshold: 6.0
|
107 |
-
- llm_int8_skip_modules: None
|
108 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
109 |
-
- llm_int8_has_fp16_weight: False
|
110 |
-
- bnb_4bit_quant_type: nf4
|
111 |
-
- bnb_4bit_use_double_quant: False
|
112 |
-
- bnb_4bit_compute_dtype: float16
|
113 |
|
114 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
- PEFT 0.
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: DavidLanz/Llama2-tw-7B-v2.0.1-chat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
+
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
|
202 |
+
- PEFT 0.10.0
|
adapter_config.json
CHANGED
@@ -6,10 +6,14 @@
|
|
6 |
"fan_in_fan_out": false,
|
7 |
"inference_mode": true,
|
8 |
"init_lora_weights": true,
|
|
|
9 |
"layers_pattern": null,
|
10 |
"layers_to_transform": null,
|
|
|
11 |
"lora_alpha": 16,
|
12 |
"lora_dropout": 0.1,
|
|
|
|
|
13 |
"modules_to_save": null,
|
14 |
"peft_type": "LORA",
|
15 |
"r": 64,
|
@@ -19,5 +23,7 @@
|
|
19 |
"q_proj",
|
20 |
"v_proj"
|
21 |
],
|
22 |
-
"task_type": "CAUSAL_LM"
|
|
|
|
|
23 |
}
|
|
|
6 |
"fan_in_fan_out": false,
|
7 |
"inference_mode": true,
|
8 |
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
"layers_pattern": null,
|
11 |
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
"lora_alpha": 16,
|
14 |
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
"modules_to_save": null,
|
18 |
"peft_type": "LORA",
|
19 |
"r": 64,
|
|
|
23 |
"q_proj",
|
24 |
"v_proj"
|
25 |
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd6d9ca132267d9a9a09bed6e5392af56870a79719a568480ccd80482781242e
|
3 |
+
size 134235048
|