DavidLanz commited on
Commit
e5531d4
1 Parent(s): f44a762

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +183 -98
  2. adapter_config.json +7 -1
  3. adapter_model.safetensors +3 -0
README.md CHANGED
@@ -1,117 +1,202 @@
1
  ---
2
  library_name: peft
3
  base_model: DavidLanz/Llama2-tw-7B-v2.0.1-chat
4
- inference: false
5
- language:
6
- - en
7
- license: llama2
8
- model_creator: Meta Llama 2
9
- model_name: Llama 2 13B Chat
10
- model_type: llama
11
- pipeline_tag: text-generation
12
- quantized_by: QLoRA
13
- tags:
14
- - facebook
15
- - meta
16
- - pytorch
17
- - llama
18
- - llama-2
19
  ---
20
 
21
  # Model Card for Model ID
22
 
23
- This PEFT weight is for predicting BTC price.
24
 
25
- Disclaimer: This model is for a time series problem on LLM performance, and it's not for investment advice; any prediction results are not a basis for investment reference.
26
 
27
- ## Model Details
28
 
29
- Training data source: BTC/USD provided by [Binance](https://www.binance.com/).
30
 
31
  ### Model Description
32
 
33
- This repo contains QLoRA format model files for [Meta's Llama 2 7B-chat](https://huggingface.co/DavidLanz/Llama2-tw-7B-v2.0.1-chat).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ## Uses
36
 
37
- ```python
38
- import torch
39
- from peft import LoraConfig, PeftModel
40
-
41
- from transformers import (
42
- AutoModelForCausalLM,
43
- AutoTokenizer,
44
- BitsAndBytesConfig,
45
- HfArgumentParser,
46
- TrainingArguments,
47
- TextStreamer,
48
- pipeline,
49
- logging,
50
- )
51
-
52
- device_map = {"": 0}
53
- use_4bit = True
54
- bnb_4bit_compute_dtype = "float16"
55
- bnb_4bit_quant_type = "nf4"
56
- use_nested_quant = False
57
- compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
58
-
59
- bnb_config = BitsAndBytesConfig(
60
- load_in_4bit=use_4bit,
61
- bnb_4bit_quant_type=bnb_4bit_quant_type,
62
- bnb_4bit_compute_dtype=compute_dtype,
63
- bnb_4bit_use_double_quant=use_nested_quant,
64
- )
65
-
66
- based_model_path = "DavidLanz/Llama2-tw-7B-v2.0.1-chat"
67
- adapter_path = "DavidLanz/llama2_7b_taiwan_btc_qlora"
68
-
69
- base_model = AutoModelForCausalLM.from_pretrained(
70
- based_model_path,
71
- low_cpu_mem_usage=True,
72
- # load_in_4bit=True,
73
- return_dict=True,
74
- quantization_config=bnb_config,
75
- torch_dtype=torch.float16,
76
- device_map=device_map,
77
- )
78
- model = PeftModel.from_pretrained(base_model, adapter_path)
79
-
80
- tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
81
- tokenizer.pad_token = tokenizer.eos_token
82
- tokenizer.padding_side = "right"
83
-
84
- from transformers import pipeline
85
-
86
- pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto")
87
- messages = [
88
- {
89
- "role": "system",
90
- "content": "你是一位專業的股票分析師",
91
- },
92
- {"role": "user", "content": "昨日開盤價為42950.02,最高價為43581.3,最低價為40610.0,收盤價為41319.11,交易量為3175.25156。請預測今日股票的開盤價?"},
93
- ]
94
- prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
95
- outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
96
- print(outputs[0]["generated_text"])
97
- ```
98
-
99
- ## Training procedure
100
-
101
-
102
- The following `bitsandbytes` quantization config was used during training:
103
- - quant_method: bitsandbytes
104
- - load_in_8bit: False
105
- - load_in_4bit: True
106
- - llm_int8_threshold: 6.0
107
- - llm_int8_skip_modules: None
108
- - llm_int8_enable_fp32_cpu_offload: False
109
- - llm_int8_has_fp16_weight: False
110
- - bnb_4bit_quant_type: nf4
111
- - bnb_4bit_use_double_quant: False
112
- - bnb_4bit_compute_dtype: float16
113
 
114
- ### Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
- - PEFT 0.6.2
 
1
  ---
2
  library_name: peft
3
  base_model: DavidLanz/Llama2-tw-7B-v2.0.1-chat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
  ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
 
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
 
202
+ - PEFT 0.10.0
adapter_config.json CHANGED
@@ -6,10 +6,14 @@
6
  "fan_in_fan_out": false,
7
  "inference_mode": true,
8
  "init_lora_weights": true,
 
9
  "layers_pattern": null,
10
  "layers_to_transform": null,
 
11
  "lora_alpha": 16,
12
  "lora_dropout": 0.1,
 
 
13
  "modules_to_save": null,
14
  "peft_type": "LORA",
15
  "r": 64,
@@ -19,5 +23,7 @@
19
  "q_proj",
20
  "v_proj"
21
  ],
22
- "task_type": "CAUSAL_LM"
 
 
23
  }
 
6
  "fan_in_fan_out": false,
7
  "inference_mode": true,
8
  "init_lora_weights": true,
9
+ "layer_replication": null,
10
  "layers_pattern": null,
11
  "layers_to_transform": null,
12
+ "loftq_config": {},
13
  "lora_alpha": 16,
14
  "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
  "modules_to_save": null,
18
  "peft_type": "LORA",
19
  "r": 64,
 
23
  "q_proj",
24
  "v_proj"
25
  ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
  }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd6d9ca132267d9a9a09bed6e5392af56870a79719a568480ccd80482781242e
3
+ size 134235048