bingwork commited on
Commit
40e827f
·
verified ·
1 Parent(s): 2e9b560

Delete mpt

Browse files
mpt/adapt_tokenizer.py DELETED
@@ -1,41 +0,0 @@
1
- from typing import Union
2
- from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
3
- Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
4
- NUM_SENTINEL_TOKENS: int = 100
5
-
6
- def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
7
- """Adds sentinel tokens and padding token (if missing).
8
-
9
- Expands the tokenizer vocabulary to include sentinel tokens
10
- used in mixture-of-denoiser tasks as well as a padding token.
11
-
12
- All added tokens are added as special tokens. No tokens are
13
- added if sentinel tokens and padding token already exist.
14
- """
15
- sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
16
- tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
17
- if tokenizer.pad_token is None:
18
- tokenizer.add_tokens('<pad>', special_tokens=True)
19
- tokenizer.pad_token = '<pad>'
20
- assert tokenizer.pad_token_id is not None
21
- sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
22
- _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
23
- tokenizer.sentinel_token_ids = _sentinel_token_ids
24
-
25
- class AutoTokenizerForMOD(AutoTokenizer):
26
- """AutoTokenizer + Adaptation for MOD.
27
-
28
- A simple wrapper around AutoTokenizer to make instantiating
29
- an MOD-adapted tokenizer a bit easier.
30
-
31
- MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
32
- a padding token, and a property to get the token ids of the
33
- sentinel tokens.
34
- """
35
-
36
- @classmethod
37
- def from_pretrained(cls, *args, **kwargs):
38
- """See `AutoTokenizer.from_pretrained` docstring."""
39
- tokenizer = super().from_pretrained(*args, **kwargs)
40
- adapt_tokenizer_for_denoising(tokenizer)
41
- return tokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/attention.py DELETED
@@ -1,300 +0,0 @@
1
- """Attention layers."""
2
- import math
3
- import warnings
4
- from typing import Optional
5
- import torch
6
- import torch.nn as nn
7
- from einops import rearrange
8
- from packaging import version
9
- from torch import nn
10
- from .norm import LPLayerNorm
11
-
12
- def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
13
- if original_is_causal and num_query_tokens != num_key_tokens:
14
- if num_query_tokens != 1:
15
- raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
16
- else:
17
- return False
18
- return original_is_causal
19
-
20
- def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
21
- q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
22
- kv_n_heads = 1 if multiquery else n_heads
23
- k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
24
- v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
25
- if past_key_value is not None:
26
- if len(past_key_value) != 0:
27
- k = torch.cat([past_key_value[0], k], dim=3)
28
- v = torch.cat([past_key_value[1], v], dim=2)
29
- past_key_value = (k, v)
30
- (b, _, s_q, d) = q.shape
31
- s_k = k.size(-1)
32
- if softmax_scale is None:
33
- softmax_scale = 1 / math.sqrt(d)
34
- attn_weight = q.matmul(k) * softmax_scale
35
- if attn_bias is not None:
36
- _s_q = max(0, attn_bias.size(2) - s_q)
37
- _s_k = max(0, attn_bias.size(3) - s_k)
38
- attn_bias = attn_bias[:, :, _s_q:, _s_k:]
39
- if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
40
- raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
41
- attn_weight = attn_weight + attn_bias
42
- min_val = torch.finfo(q.dtype).min
43
- if key_padding_mask is not None:
44
- if attn_bias is not None:
45
- warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
46
- attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
47
- if is_causal and (not q.size(2) == 1):
48
- s = max(s_q, s_k)
49
- causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
50
- causal_mask = causal_mask.tril()
51
- causal_mask = causal_mask.to(torch.bool)
52
- causal_mask = ~causal_mask
53
- causal_mask = causal_mask[-s_q:, -s_k:]
54
- attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
55
- attn_weight = torch.softmax(attn_weight, dim=-1)
56
- if dropout_p:
57
- attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
58
- out = attn_weight.to(v.dtype).matmul(v)
59
- out = rearrange(out, 'b h s d -> b s (h d)')
60
- if needs_weights:
61
- return (out, attn_weight, past_key_value)
62
- return (out, None, past_key_value)
63
-
64
- def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
65
- for tensor in tensors:
66
- if tensor.dtype not in valid_dtypes:
67
- raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
68
- if not tensor.is_cuda:
69
- raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
70
-
71
- def flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
72
- try:
73
- from flash_attn import bert_padding, flash_attn_interface
74
- except:
75
- raise RuntimeError('Please install flash-attn==1.0.3.post0')
76
- check_valid_inputs(query, key, value)
77
- if past_key_value is not None:
78
- if len(past_key_value) != 0:
79
- key = torch.cat([past_key_value[0], key], dim=1)
80
- value = torch.cat([past_key_value[1], value], dim=1)
81
- past_key_value = (key, value)
82
- if attn_bias is not None:
83
- _s_q = max(0, attn_bias.size(2) - query.size(1))
84
- _s_k = max(0, attn_bias.size(3) - key.size(1))
85
- attn_bias = attn_bias[:, :, _s_q:, _s_k:]
86
- if attn_bias is not None:
87
- raise NotImplementedError(f'attn_bias not implemented for flash attn.')
88
- (batch_size, seqlen) = query.shape[:2]
89
- if key_padding_mask is None:
90
- key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
91
- query_padding_mask = key_padding_mask[:, -query.size(1):]
92
- (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
93
- query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
94
- (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
95
- key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
96
- (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
97
- value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
98
- if multiquery:
99
- key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
100
- value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
101
- dropout_p = dropout_p if training else 0.0
102
- reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
103
- output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
104
- output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
105
- return (output, None, past_key_value)
106
-
107
- def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
108
- try:
109
- from .flash_attn_triton import flash_attn_func
110
- except:
111
- _installed = False
112
- if version.parse(torch.__version__) < version.parse('2.0.0'):
113
- _installed = True
114
- try:
115
- from flash_attn.flash_attn_triton import flash_attn_func
116
- except:
117
- _installed = False
118
- if not _installed:
119
- raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
120
- check_valid_inputs(query, key, value)
121
- if past_key_value is not None:
122
- if len(past_key_value) != 0:
123
- key = torch.cat([past_key_value[0], key], dim=1)
124
- value = torch.cat([past_key_value[1], value], dim=1)
125
- past_key_value = (key, value)
126
- if attn_bias is not None:
127
- _s_q = max(0, attn_bias.size(2) - query.size(1))
128
- _s_k = max(0, attn_bias.size(3) - key.size(1))
129
- attn_bias = attn_bias[:, :, _s_q:, _s_k:]
130
- if dropout_p:
131
- raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
132
- if needs_weights:
133
- raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
134
- if key_padding_mask is not None:
135
- warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
136
- (b_size, s_k) = key_padding_mask.shape[:2]
137
- if attn_bias is None:
138
- attn_bias = query.new_zeros(b_size, 1, 1, s_k)
139
- attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
140
- query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
141
- key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
142
- value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
143
- if multiquery:
144
- key = key.expand(*key.shape[:2], n_heads, key.size(-1))
145
- value = value.expand(*value.shape[:2], n_heads, value.size(-1))
146
- reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
147
- attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
148
- output = attn_output.view(*attn_output.shape[:2], -1)
149
- return (output, None, past_key_value)
150
-
151
- class MultiheadAttention(nn.Module):
152
- """Multi-head self attention.
153
-
154
- Using torch or triton attention implementation enables user to also use
155
- additive bias.
156
- """
157
-
158
- def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
159
- super().__init__()
160
- self.attn_impl = attn_impl
161
- self.clip_qkv = clip_qkv
162
- self.qk_ln = qk_ln
163
- self.d_model = d_model
164
- self.n_heads = n_heads
165
- self.softmax_scale = softmax_scale
166
- if self.softmax_scale is None:
167
- self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
168
- self.attn_dropout_p = attn_pdrop
169
- self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
170
- fuse_splits = (d_model, 2 * d_model)
171
- self.Wqkv._fused = (0, fuse_splits)
172
- if self.qk_ln:
173
- layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
174
- self.q_ln = layernorm_class(self.d_model, device=device)
175
- self.k_ln = layernorm_class(self.d_model, device=device)
176
- if self.attn_impl == 'flash':
177
- self.attn_fn = flash_attn_fn
178
- elif self.attn_impl == 'triton':
179
- self.attn_fn = triton_flash_attn_fn
180
- if verbose:
181
- warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
182
- elif self.attn_impl == 'torch':
183
- self.attn_fn = scaled_multihead_dot_product_attention
184
- if torch.cuda.is_available() and verbose:
185
- warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
186
- else:
187
- raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
188
- self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
189
- self.out_proj._is_residual = True
190
-
191
- def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
192
- qkv = self.Wqkv(x)
193
- if self.clip_qkv:
194
- qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
195
- (query, key, value) = qkv.chunk(3, dim=2)
196
- key_padding_mask = attention_mask
197
- if self.qk_ln:
198
- dtype = query.dtype
199
- query = self.q_ln(query).to(dtype)
200
- key = self.k_ln(key).to(dtype)
201
- (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
202
- return (self.out_proj(context), attn_weights, past_key_value)
203
-
204
- class MultiQueryAttention(nn.Module):
205
- """Multi-Query self attention.
206
-
207
- Using torch or triton attention implementation enables user to also use
208
- additive bias.
209
- """
210
-
211
- def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
212
- super().__init__()
213
- self.attn_impl = attn_impl
214
- self.clip_qkv = clip_qkv
215
- self.qk_ln = qk_ln
216
- self.d_model = d_model
217
- self.n_heads = n_heads
218
- self.head_dim = d_model // n_heads
219
- self.softmax_scale = softmax_scale
220
- if self.softmax_scale is None:
221
- self.softmax_scale = 1 / math.sqrt(self.head_dim)
222
- self.attn_dropout_p = attn_pdrop
223
- self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
224
- fuse_splits = (d_model, d_model + self.head_dim)
225
- self.Wqkv._fused = (0, fuse_splits)
226
- if self.qk_ln:
227
- layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
228
- self.q_ln = layernorm_class(d_model, device=device)
229
- self.k_ln = layernorm_class(self.head_dim, device=device)
230
- if self.attn_impl == 'flash':
231
- self.attn_fn = flash_attn_fn
232
- elif self.attn_impl == 'triton':
233
- self.attn_fn = triton_flash_attn_fn
234
- if verbose:
235
- warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
236
- elif self.attn_impl == 'torch':
237
- self.attn_fn = scaled_multihead_dot_product_attention
238
- if torch.cuda.is_available() and verbose:
239
- warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
240
- else:
241
- raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
242
- self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
243
- self.out_proj._is_residual = True
244
-
245
- def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
246
- qkv = self.Wqkv(x)
247
- if self.clip_qkv:
248
- qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
249
- (query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
250
- key_padding_mask = attention_mask
251
- if self.qk_ln:
252
- dtype = query.dtype
253
- query = self.q_ln(query).to(dtype)
254
- key = self.k_ln(key).to(dtype)
255
- (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
256
- return (self.out_proj(context), attn_weights, past_key_value)
257
-
258
- def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
259
- if attn_impl == 'flash':
260
- return None
261
- elif attn_impl in ['torch', 'triton']:
262
- if alibi:
263
- if (prefix_lm or not causal) or use_sequence_id:
264
- return (1, n_heads, seq_len, seq_len)
265
- return (1, n_heads, 1, seq_len)
266
- elif prefix_lm or use_sequence_id:
267
- return (1, 1, seq_len, seq_len)
268
- return None
269
- else:
270
- raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
271
-
272
- def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
273
- if attn_impl == 'flash':
274
- return None
275
- elif attn_impl in ['torch', 'triton']:
276
- if alibi:
277
- (device, dtype) = (attn_bias.device, attn_bias.dtype)
278
- attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
279
- return attn_bias
280
- else:
281
- raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
282
-
283
- def gen_slopes(n_heads, alibi_bias_max=8, device=None):
284
- _n_heads = 2 ** math.ceil(math.log2(n_heads))
285
- m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
286
- m = m.mul(alibi_bias_max / _n_heads)
287
- slopes = 1.0 / torch.pow(2, m)
288
- if _n_heads != n_heads:
289
- slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
290
- return slopes.view(1, n_heads, 1, 1)
291
-
292
- def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
293
- alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
294
- if full:
295
- alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
296
- alibi_bias = alibi_bias.abs().mul(-1)
297
- slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
298
- alibi_bias = alibi_bias * slopes
299
- return alibi_bias.to(dtype=dtype)
300
- ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/blocks.py DELETED
@@ -1,41 +0,0 @@
1
- """GPT Blocks used for the GPT Model."""
2
- from typing import Dict, Optional, Tuple
3
- import torch
4
- import torch.nn as nn
5
- from .attention import ATTN_CLASS_REGISTRY
6
- from .norm import NORM_CLASS_REGISTRY
7
-
8
- class MPTMLP(nn.Module):
9
-
10
- def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
11
- super().__init__()
12
- self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
13
- self.act = nn.GELU(approximate='none')
14
- self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
15
- self.down_proj._is_residual = True
16
-
17
- def forward(self, x):
18
- return self.down_proj(self.act(self.up_proj(x)))
19
-
20
- class MPTBlock(nn.Module):
21
-
22
- def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', verbose: int=0, device: Optional[str]=None, **kwargs):
23
- del kwargs
24
- super().__init__()
25
- norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
26
- attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
27
- self.norm_1 = norm_class(d_model, device=device)
28
- self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, verbose=verbose, device=device)
29
- self.norm_2 = norm_class(d_model, device=device)
30
- self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
31
- self.resid_attn_dropout = nn.Dropout(resid_pdrop)
32
- self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
33
-
34
- def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
35
- a = self.norm_1(x)
36
- (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
37
- x = x + self.resid_attn_dropout(b)
38
- m = self.norm_2(x)
39
- n = self.ffn(m)
40
- x = x + self.resid_ffn_dropout(n)
41
- return (x, attn_weights, past_key_value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/configuration_mpt.py DELETED
@@ -1,118 +0,0 @@
1
- """A HuggingFace-style model configuration."""
2
- from typing import Dict, Optional, Union
3
- from transformers import PretrainedConfig
4
- attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
5
- init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
6
-
7
- class MPTConfig(PretrainedConfig):
8
- model_type = 'mpt'
9
-
10
- def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs):
11
- """The MPT configuration class.
12
-
13
- Args:
14
- d_model (int): The size of the embedding dimension of the model.
15
- n_heads (int): The number of attention heads.
16
- n_layers (int): The number of layers in the model.
17
- expansion_ratio (int): The ratio of the up/down scale in the MLP.
18
- max_seq_len (int): The maximum sequence length of the model.
19
- vocab_size (int): The size of the vocabulary.
20
- resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
21
- emb_pdrop (float): The dropout probability for the embedding layer.
22
- learned_pos_emb (bool): Whether to use learned positional embeddings
23
- attn_config (Dict): A dictionary used to configure the model's attention module:
24
- attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
25
- attn_pdrop (float): The dropout probability for the attention layers.
26
- attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
27
- qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
28
- clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
29
- this value.
30
- softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
31
- use the default scale of ``1/sqrt(d_keys)``.
32
- prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
33
- extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
34
- can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
35
- attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
36
- When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
37
- which sub-sequence each token belongs to.
38
- Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
39
- alibi (bool): Whether to use the alibi bias instead of position embeddings.
40
- alibi_bias_max (int): The maximum value of the alibi bias.
41
- init_device (str): The device to use for parameter initialization.
42
- logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
43
- no_bias (bool): Whether to use bias in all layers.
44
- verbose (int): The verbosity level. 0 is silent.
45
- embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
46
- norm_type (str): choose type of norm to use
47
- multiquery_attention (bool): Whether to use multiquery attention implementation.
48
- use_cache (bool): Whether or not the model should return the last key/values attentions
49
- init_config (Dict): A dictionary used to configure the model initialization:
50
- init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
51
- 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
52
- 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
53
- init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
54
- emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
55
- emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
56
- used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
57
- init_std (float): The standard deviation of the normal distribution used to initialize the model,
58
- if using the baseline_ parameter initialization scheme.
59
- init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
60
- fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
61
- init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
62
- ---
63
- See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
64
- """
65
- self.d_model = d_model
66
- self.n_heads = n_heads
67
- self.n_layers = n_layers
68
- self.expansion_ratio = expansion_ratio
69
- self.max_seq_len = max_seq_len
70
- self.vocab_size = vocab_size
71
- self.resid_pdrop = resid_pdrop
72
- self.emb_pdrop = emb_pdrop
73
- self.learned_pos_emb = learned_pos_emb
74
- self.attn_config = attn_config
75
- self.init_device = init_device
76
- self.logit_scale = logit_scale
77
- self.no_bias = no_bias
78
- self.verbose = verbose
79
- self.embedding_fraction = embedding_fraction
80
- self.norm_type = norm_type
81
- self.use_cache = use_cache
82
- self.init_config = init_config
83
- if 'name' in kwargs:
84
- del kwargs['name']
85
- if 'loss_fn' in kwargs:
86
- del kwargs['loss_fn']
87
- super().__init__(**kwargs)
88
- self._validate_config()
89
-
90
- def _set_config_defaults(self, config, config_defaults):
91
- for (k, v) in config_defaults.items():
92
- if k not in config:
93
- config[k] = v
94
- return config
95
-
96
- def _validate_config(self):
97
- self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
98
- self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
99
- if self.d_model % self.n_heads != 0:
100
- raise ValueError('d_model must be divisible by n_heads')
101
- if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
102
- raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
103
- if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
104
- raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
105
- if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
106
- raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
107
- if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
108
- raise NotImplementedError('alibi only implemented with torch and triton attention.')
109
- if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
110
- raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
111
- if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
112
- raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
113
- if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
114
- raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
115
- if self.init_config.get('name', None) is None:
116
- raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
117
- if not self.learned_pos_emb and (not self.attn_config['alibi']):
118
- raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/custom_embedding.py DELETED
@@ -1,11 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from torch import Tensor
5
-
6
- class SharedEmbedding(nn.Embedding):
7
-
8
- def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
9
- if unembed:
10
- return F.linear(input, self.weight)
11
- return super().forward(input)
 
 
 
 
 
 
 
 
 
 
 
 
mpt/flash_attn_triton.py DELETED
@@ -1,484 +0,0 @@
1
- """
2
- Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
3
- update imports to use 'triton_pre_mlir'
4
-
5
- *Experimental* implementation of FlashAttention in Triton.
6
- Tested with triton==2.0.0.dev20221202.
7
- Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
8
- other than 64:
9
- https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
10
- We'll update this implementation with the new Triton backend once this is fixed.
11
-
12
- We use the FlashAttention implementation from Phil Tillet a starting point.
13
- https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
14
-
15
- Changes:
16
- - Implement both causal and non-causal attention.
17
- - Implement both self-attention and cross-attention.
18
- - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
19
- - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
20
- - Support attention bias.
21
- - Speed up the forward pass a bit, and only store the LSE instead of m and l.
22
- - Make the backward for d=128 much faster by reducing register spilling.
23
- - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
24
- small batch size * nheads.
25
-
26
- Caution:
27
- - This is an *experimental* implementation. The forward pass should be quite robust but
28
- I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
29
- - This implementation has only been tested on A100.
30
- - If you plan to use headdim other than 64 and 128, you should test for race conditions
31
- (due to the Triton compiler), as done in tests/test_flash_attn.py
32
- "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
33
- for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
34
- that there are none left for other head dimensions.
35
-
36
- Differences between this Triton version and the CUDA version:
37
- - Triton version doesn't support dropout.
38
- - Triton forward is generally faster than CUDA forward, while Triton backward is
39
- generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
40
- than CUDA forward + backward.
41
- - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
42
- - Triton version supports attention bias, while CUDA version doesn't.
43
- """
44
- import math
45
- import torch
46
- import triton_pre_mlir as triton
47
- import triton_pre_mlir.language as tl
48
-
49
- @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
50
- @triton.jit
51
- def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
52
- start_m = tl.program_id(0)
53
- off_hb = tl.program_id(1)
54
- off_b = off_hb // nheads
55
- off_h = off_hb % nheads
56
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
57
- offs_n = tl.arange(0, BLOCK_N)
58
- offs_d = tl.arange(0, BLOCK_HEADDIM)
59
- q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
60
- k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
61
- v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
62
- if BIAS_TYPE == 'vector':
63
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
64
- elif BIAS_TYPE == 'matrix':
65
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
66
- t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
67
- lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
68
- m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
69
- acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
70
- if EVEN_M & EVEN_N:
71
- if EVEN_HEADDIM:
72
- q = tl.load(q_ptrs)
73
- else:
74
- q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
75
- elif EVEN_HEADDIM:
76
- q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
77
- else:
78
- q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
79
- end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
80
- for start_n in range(0, end_n, BLOCK_N):
81
- start_n = tl.multiple_of(start_n, BLOCK_N)
82
- if EVEN_N & EVEN_M:
83
- if EVEN_HEADDIM:
84
- k = tl.load(k_ptrs + start_n * stride_kn)
85
- else:
86
- k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
87
- elif EVEN_HEADDIM:
88
- k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
89
- else:
90
- k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
91
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
92
- qk += tl.dot(q, k, trans_b=True)
93
- if not EVEN_N:
94
- qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
95
- if IS_CAUSAL:
96
- qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
97
- if BIAS_TYPE != 'none':
98
- if BIAS_TYPE == 'vector':
99
- if EVEN_N:
100
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
101
- else:
102
- bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
103
- bias = bias[None, :]
104
- elif BIAS_TYPE == 'matrix':
105
- if EVEN_M & EVEN_N:
106
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
107
- else:
108
- bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
109
- qk = qk * softmax_scale + bias
110
- m_ij = tl.maximum(tl.max(qk, 1), lse_i)
111
- p = tl.exp(qk - m_ij[:, None])
112
- else:
113
- m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
114
- p = tl.exp(qk * softmax_scale - m_ij[:, None])
115
- l_ij = tl.sum(p, 1)
116
- acc_o_scale = tl.exp(m_i - m_ij)
117
- tl.store(t_ptrs, acc_o_scale)
118
- acc_o_scale = tl.load(t_ptrs)
119
- acc_o = acc_o * acc_o_scale[:, None]
120
- if EVEN_N & EVEN_M:
121
- if EVEN_HEADDIM:
122
- v = tl.load(v_ptrs + start_n * stride_vn)
123
- else:
124
- v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
125
- elif EVEN_HEADDIM:
126
- v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
127
- else:
128
- v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
129
- p = p.to(v.dtype)
130
- acc_o += tl.dot(p, v)
131
- m_i = m_ij
132
- l_i_new = tl.exp(lse_i - m_ij) + l_ij
133
- lse_i = m_ij + tl.log(l_i_new)
134
- o_scale = tl.exp(m_i - lse_i)
135
- tl.store(t_ptrs, o_scale)
136
- o_scale = tl.load(t_ptrs)
137
- acc_o = acc_o * o_scale[:, None]
138
- start_m = tl.program_id(0)
139
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
140
- lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
141
- tl.store(lse_ptrs, lse_i)
142
- offs_d = tl.arange(0, BLOCK_HEADDIM)
143
- out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
144
- if EVEN_M:
145
- if EVEN_HEADDIM:
146
- tl.store(out_ptrs, acc_o)
147
- else:
148
- tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
149
- elif EVEN_HEADDIM:
150
- tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
151
- else:
152
- tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
153
-
154
- @triton.jit
155
- def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
156
- start_m = tl.program_id(0)
157
- off_hb = tl.program_id(1)
158
- off_b = off_hb // nheads
159
- off_h = off_hb % nheads
160
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
161
- offs_d = tl.arange(0, BLOCK_HEADDIM)
162
- o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
163
- do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
164
- delta = tl.sum(o * do, axis=1)
165
- tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
166
-
167
- @triton.jit
168
- def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
169
- if EVEN_N & EVEN_M:
170
- if EVEN_HEADDIM:
171
- tl.store(dv_ptrs, dv)
172
- tl.store(dk_ptrs, dk)
173
- else:
174
- tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
175
- tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
176
- elif EVEN_HEADDIM:
177
- tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
178
- tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
179
- else:
180
- tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
181
- tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
182
-
183
- @triton.jit
184
- def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
185
- begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
186
- offs_qm = begin_m + tl.arange(0, BLOCK_M)
187
- offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
188
- offs_m = tl.arange(0, BLOCK_M)
189
- offs_d = tl.arange(0, BLOCK_HEADDIM)
190
- q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
191
- k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
192
- v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
193
- do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
194
- dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
195
- if BIAS_TYPE == 'vector':
196
- b_ptrs = Bias + offs_n
197
- elif BIAS_TYPE == 'matrix':
198
- b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
199
- dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
200
- dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
201
- if begin_m >= seqlen_q:
202
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
203
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
204
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
205
- return
206
- if EVEN_N & EVEN_M:
207
- if EVEN_HEADDIM:
208
- k = tl.load(k_ptrs)
209
- v = tl.load(v_ptrs)
210
- else:
211
- k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
212
- v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
213
- elif EVEN_HEADDIM:
214
- k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
215
- v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
216
- else:
217
- k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
218
- v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
219
- num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
220
- for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
221
- start_m = tl.multiple_of(start_m, BLOCK_M)
222
- offs_m_curr = start_m + offs_m
223
- if EVEN_M & EVEN_HEADDIM:
224
- q = tl.load(q_ptrs)
225
- elif EVEN_HEADDIM:
226
- q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
227
- else:
228
- q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
229
- qk = tl.dot(q, k, trans_b=True)
230
- if not EVEN_N:
231
- qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
232
- if IS_CAUSAL:
233
- qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
234
- if BIAS_TYPE != 'none':
235
- tl.debug_barrier()
236
- if BIAS_TYPE == 'vector':
237
- if EVEN_N:
238
- bias = tl.load(b_ptrs).to(tl.float32)
239
- else:
240
- bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
241
- bias = bias[None, :]
242
- elif BIAS_TYPE == 'matrix':
243
- if EVEN_M & EVEN_N:
244
- bias = tl.load(b_ptrs).to(tl.float32)
245
- else:
246
- bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
247
- qk = qk * softmax_scale + bias
248
- if not EVEN_M & EVEN_HEADDIM:
249
- tl.debug_barrier()
250
- lse_i = tl.load(LSE + offs_m_curr)
251
- if BIAS_TYPE == 'none':
252
- p = tl.exp(qk * softmax_scale - lse_i[:, None])
253
- else:
254
- p = tl.exp(qk - lse_i[:, None])
255
- if EVEN_M & EVEN_HEADDIM:
256
- do = tl.load(do_ptrs)
257
- else:
258
- do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
259
- dv += tl.dot(p.to(do.dtype), do, trans_a=True)
260
- if not EVEN_M & EVEN_HEADDIM:
261
- tl.debug_barrier()
262
- dp = tl.dot(do, v, trans_b=True)
263
- if not EVEN_HEADDIM:
264
- tl.debug_barrier()
265
- Di = tl.load(D + offs_m_curr)
266
- ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
267
- dk += tl.dot(ds, q, trans_a=True)
268
- if not EVEN_M & EVEN_HEADDIM:
269
- tl.debug_barrier()
270
- if not ATOMIC_ADD:
271
- if EVEN_M & EVEN_HEADDIM:
272
- dq = tl.load(dq_ptrs, eviction_policy='evict_last')
273
- dq += tl.dot(ds, k)
274
- tl.store(dq_ptrs, dq, eviction_policy='evict_last')
275
- elif EVEN_HEADDIM:
276
- dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
277
- dq += tl.dot(ds, k)
278
- tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
279
- else:
280
- dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
281
- dq += tl.dot(ds, k)
282
- tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
283
- else:
284
- dq = tl.dot(ds, k)
285
- if EVEN_M & EVEN_HEADDIM:
286
- tl.atomic_add(dq_ptrs, dq)
287
- elif EVEN_HEADDIM:
288
- tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
289
- else:
290
- tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
291
- dq_ptrs += BLOCK_M * stride_dqm
292
- q_ptrs += BLOCK_M * stride_qm
293
- do_ptrs += BLOCK_M * stride_dom
294
- if BIAS_TYPE == 'matrix':
295
- b_ptrs += BLOCK_M * stride_bm
296
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
297
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
298
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
299
-
300
- def init_to_zero(name):
301
- return lambda nargs: nargs[name].zero_()
302
-
303
- @triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
304
- @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
305
- @triton.jit
306
- def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
307
- off_hb = tl.program_id(1)
308
- off_b = off_hb // nheads
309
- off_h = off_hb % nheads
310
- Q += off_b * stride_qb + off_h * stride_qh
311
- K += off_b * stride_kb + off_h * stride_kh
312
- V += off_b * stride_vb + off_h * stride_vh
313
- DO += off_b * stride_dob + off_h * stride_doh
314
- DQ += off_b * stride_dqb + off_h * stride_dqh
315
- DK += off_b * stride_dkb + off_h * stride_dkh
316
- DV += off_b * stride_dvb + off_h * stride_dvh
317
- if BIAS_TYPE != 'none':
318
- Bias += off_b * stride_bb + off_h * stride_bh
319
- D += off_hb * seqlen_q_rounded
320
- LSE += off_hb * seqlen_q_rounded
321
- if not SEQUENCE_PARALLEL:
322
- num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
323
- for start_n in range(0, num_block_n):
324
- _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
325
- else:
326
- start_n = tl.program_id(0)
327
- _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
328
-
329
- def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
330
- (batch, seqlen_q, nheads, d) = q.shape
331
- (_, seqlen_k, _, _) = k.shape
332
- assert k.shape == (batch, seqlen_k, nheads, d)
333
- assert v.shape == (batch, seqlen_k, nheads, d)
334
- assert d <= 128, 'FlashAttention only support head dimensions up to 128'
335
- assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
336
- assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
337
- assert q.is_cuda and k.is_cuda and v.is_cuda
338
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
339
- has_bias = bias is not None
340
- bias_type = 'none'
341
- if has_bias:
342
- assert bias.dtype in [q.dtype, torch.float]
343
- assert bias.is_cuda
344
- assert bias.dim() == 4
345
- if bias.stride(-1) != 1:
346
- bias = bias.contiguous()
347
- if bias.shape[2:] == (1, seqlen_k):
348
- bias_type = 'vector'
349
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
350
- bias_type = 'matrix'
351
- else:
352
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
353
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
354
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
355
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
356
- lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
357
- tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
358
- o = torch.empty_like(q)
359
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
360
- BLOCK = 128
361
- num_warps = 4 if d <= 64 else 8
362
- grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
363
- _fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
364
- return (o, lse, softmax_scale)
365
-
366
- def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
367
- if do.stride(-1) != 1:
368
- do = do.contiguous()
369
- (batch, seqlen_q, nheads, d) = q.shape
370
- (_, seqlen_k, _, _) = k.shape
371
- assert d <= 128
372
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
373
- assert lse.shape == (batch, nheads, seqlen_q_rounded)
374
- assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
375
- assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
376
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
377
- dq_accum = torch.empty_like(q, dtype=torch.float32)
378
- delta = torch.empty_like(lse)
379
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
380
- grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
381
- _bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
382
- has_bias = bias is not None
383
- bias_type = 'none'
384
- if has_bias:
385
- assert bias.dtype in [q.dtype, torch.float]
386
- assert bias.is_cuda
387
- assert bias.dim() == 4
388
- assert bias.stride(-1) == 1
389
- if bias.shape[2:] == (1, seqlen_k):
390
- bias_type = 'vector'
391
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
392
- bias_type = 'matrix'
393
- else:
394
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
395
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
396
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
397
- grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
398
- _bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
399
- dq.copy_(dq_accum)
400
-
401
- class FlashAttnQKVPackedFunc(torch.autograd.Function):
402
-
403
- @staticmethod
404
- def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
405
- """
406
- qkv: (batch, seqlen, 3, nheads, headdim)
407
- bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
408
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
409
- ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
410
- """
411
- if qkv.stride(-1) != 1:
412
- qkv = qkv.contiguous()
413
- (o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
414
- ctx.save_for_backward(qkv, o, lse, bias)
415
- ctx.causal = causal
416
- return o
417
-
418
- @staticmethod
419
- def backward(ctx, do):
420
- (qkv, o, lse, bias) = ctx.saved_tensors
421
- assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
422
- with torch.inference_mode():
423
- dqkv = torch.empty_like(qkv)
424
- _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
425
- return (dqkv, None, None, None)
426
- flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
427
-
428
- class FlashAttnKVPackedFunc(torch.autograd.Function):
429
-
430
- @staticmethod
431
- def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
432
- """
433
- q: (batch, seqlen_q, nheads, headdim)
434
- kv: (batch, seqlen_k, 2, nheads, headdim)
435
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
436
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
437
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
438
- """
439
- (q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
440
- (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
441
- ctx.save_for_backward(q, kv, o, lse, bias)
442
- ctx.causal = causal
443
- return o
444
-
445
- @staticmethod
446
- def backward(ctx, do):
447
- (q, kv, o, lse, bias) = ctx.saved_tensors
448
- if len(ctx.needs_input_grad) >= 3:
449
- assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
450
- with torch.inference_mode():
451
- dq = torch.empty_like(q)
452
- dkv = torch.empty_like(kv)
453
- _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
454
- return (dq, dkv, None, None, None)
455
- flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
456
-
457
- class FlashAttnFunc(torch.autograd.Function):
458
-
459
- @staticmethod
460
- def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
461
- """
462
- q: (batch_size, seqlen_q, nheads, headdim)
463
- k, v: (batch_size, seqlen_k, nheads, headdim)
464
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
465
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
466
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
467
- """
468
- (q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
469
- (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
470
- ctx.save_for_backward(q, k, v, o, lse, bias)
471
- ctx.causal = causal
472
- return o
473
-
474
- @staticmethod
475
- def backward(ctx, do):
476
- (q, k, v, o, lse, bias) = ctx.saved_tensors
477
- assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
478
- with torch.inference_mode():
479
- dq = torch.empty_like(q)
480
- dk = torch.empty_like(k)
481
- dv = torch.empty_like(v)
482
- _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
483
- return (dq, dk, dv, None, None, None)
484
- flash_attn_func = FlashAttnFunc.apply
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/hf_prefixlm_converter.py DELETED
@@ -1,415 +0,0 @@
1
- """Converts Huggingface Causal LM to Prefix LM.
2
-
3
- Conversion does lightweight surgery on a HuggingFace
4
- Causal LM to convert it to a Prefix LM.
5
-
6
- Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
- and treat the input prompt as the prefix in `generate`.
8
- """
9
- import math
10
- import warnings
11
- from types import MethodType
12
- from typing import Any, Dict, List, Optional, Tuple, Union
13
- import torch
14
- from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
15
- from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
16
- from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
17
- from transformers.models.bloom.modeling_bloom import logging
18
- from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
19
- from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
20
- from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
21
- from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
22
- from transformers.models.opt.modeling_opt import OPTForCausalLM
23
- from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
24
- from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
25
- logger = logging.get_logger(__name__)
26
- _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
27
- CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
28
-
29
- def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
30
- """Converts a GPT-style Causal LM to a Prefix LM.
31
-
32
- Supported HuggingFace model classes:
33
- - `GPT2LMHeadModel`
34
- - `GPTNeoForCausalLM`
35
- - `GPTNeoXForCausalLM`
36
- - `GPTJForCausalLM`
37
-
38
- See `convert_hf_causal_lm_to_prefix_lm` for more details.
39
- """
40
- if hasattr(model, '_prefix_lm_converted'):
41
- return model
42
- assert isinstance(model, _SUPPORTED_GPT_MODELS)
43
- assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
44
-
45
- def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
46
- """Helper that gets a list of the model's attention modules.
47
-
48
- Each module has a `bias` buffer used for causal masking. The Prefix LM
49
- conversion adds logic to dynamically manipulate these biases to support
50
- Prefix LM attention masking.
51
- """
52
- attn_modules = []
53
- if isinstance(model, GPTNeoXForCausalLM):
54
- blocks = model.gpt_neox.layers
55
- else:
56
- blocks = model.transformer.h
57
- for block in blocks:
58
- if isinstance(model, GPTNeoForCausalLM):
59
- if block.attn.attention_type != 'global':
60
- continue
61
- attn_module = block.attn.attention
62
- elif isinstance(model, GPTNeoXForCausalLM):
63
- attn_module = block.attention
64
- else:
65
- attn_module = block.attn
66
- attn_modules.append(attn_module)
67
- return attn_modules
68
- setattr(model, '_original_forward', getattr(model, 'forward'))
69
- setattr(model, '_original_generate', getattr(model, 'generate'))
70
-
71
- def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
72
- """Wraps original forward to enable PrefixLM attention."""
73
-
74
- def call_og_forward():
75
- if isinstance(self, GPTNeoXForCausalLM):
76
- return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
77
- else:
78
- return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
79
- if bidirectional_mask is None:
80
- return call_og_forward()
81
- assert isinstance(bidirectional_mask, torch.Tensor)
82
- attn_modules = _get_attn_modules(model)
83
- (b, s) = bidirectional_mask.shape
84
- max_length = attn_modules[0].bias.shape[-1]
85
- if s > max_length:
86
- raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
87
- assert s <= max_length
88
- if s < max_length:
89
- pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
90
- bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
91
- bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
92
- for attn_module in attn_modules:
93
- attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
94
- output = call_og_forward()
95
- for attn_module in attn_modules:
96
- attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
97
- return output
98
-
99
- def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]):
100
- """Wraps original generate to enable PrefixLM attention."""
101
- attn_modules = _get_attn_modules(model)
102
- for attn_module in attn_modules:
103
- attn_module.bias.data[:] = 1
104
- output = self._original_generate(*args, **kwargs)
105
- for attn_module in attn_modules:
106
- attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
107
- return output
108
- setattr(model, 'forward', MethodType(forward, model))
109
- setattr(model, 'generate', MethodType(generate, model))
110
- setattr(model, '_prefix_lm_converted', True)
111
- return model
112
-
113
- def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
114
- """Converts a BLOOM Causal LM to a Prefix LM.
115
-
116
- Supported HuggingFace model classes:
117
- - `BloomForCausalLM`
118
-
119
- See `convert_hf_causal_lm_to_prefix_lm` for more details.
120
- """
121
- if hasattr(model, '_prefix_lm_converted'):
122
- return model
123
- assert isinstance(model, BloomForCausalLM)
124
- assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
125
-
126
- def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
127
- combined_attention_mask = None
128
- device = attention_mask.device
129
- (_, src_length) = input_shape
130
- if src_length > 1:
131
- combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
132
- if bidirectional_mask is not None:
133
- assert attention_mask.shape == bidirectional_mask.shape
134
- expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
135
- combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
136
- expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
137
- combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
138
- return combined_attention_mask
139
-
140
- def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
141
- num_heads = self.config.n_head
142
- closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
143
- base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
144
- powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
145
- slopes = torch.pow(base, powers)
146
- if closest_power_of_2 != num_heads:
147
- extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
148
- num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
149
- extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
150
- slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
151
- qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
152
- ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
153
- diffs = qa - ka + key_length - query_length
154
- diffs = -diffs.abs()
155
- alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
156
- alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
157
- return alibi.to(dtype)
158
- KeyValueT = Tuple[torch.Tensor, torch.Tensor]
159
-
160
- def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
161
- if deprecated_arguments.pop('position_ids', False) is not False:
162
- warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
163
- if len(deprecated_arguments) > 0:
164
- raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
165
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
166
- output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
167
- use_cache = use_cache if use_cache is not None else self.config.use_cache
168
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
169
- if input_ids is not None and inputs_embeds is not None:
170
- raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
171
- elif input_ids is not None:
172
- (batch_size, seq_length) = input_ids.shape
173
- elif inputs_embeds is not None:
174
- (batch_size, seq_length, _) = inputs_embeds.shape
175
- else:
176
- raise ValueError('You have to specify either input_ids or inputs_embeds')
177
- if past_key_values is None:
178
- past_key_values = tuple([None] * len(self.h))
179
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
180
- if inputs_embeds is None:
181
- inputs_embeds = self.word_embeddings(input_ids)
182
- hidden_states = self.word_embeddings_layernorm(inputs_embeds)
183
- presents = () if use_cache else None
184
- all_self_attentions = () if output_attentions else None
185
- all_hidden_states = () if output_hidden_states else None
186
- seq_length_with_past = seq_length
187
- past_key_values_length = 0
188
- if past_key_values[0] is not None:
189
- tmp = past_key_values[0][0]
190
- past_key_values_length = tmp.shape[2]
191
- seq_length_with_past = seq_length_with_past + past_key_values_length
192
- if attention_mask is None:
193
- attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
194
- else:
195
- attention_mask = attention_mask.to(hidden_states.device)
196
- alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
197
- causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
198
- for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
199
- if output_hidden_states:
200
- hst = (hidden_states,)
201
- all_hidden_states = all_hidden_states + hst
202
- if self.gradient_checkpointing and self.training:
203
- if use_cache:
204
- logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
205
- use_cache = False
206
-
207
- def create_custom_forward(module):
208
-
209
- def custom_forward(*inputs):
210
- return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
211
- return custom_forward
212
- outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
213
- else:
214
- outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
215
- hidden_states = outputs[0]
216
- if use_cache is True:
217
- presents = presents + (outputs[1],)
218
- if output_attentions:
219
- oa = (outputs[2 if use_cache else 1],)
220
- all_self_attentions = all_self_attentions + oa
221
- hidden_states = self.ln_f(hidden_states)
222
- if output_hidden_states:
223
- hst = (hidden_states,)
224
- all_hidden_states = all_hidden_states + hst
225
- if not return_dict:
226
- return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
227
- return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
228
- setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
229
- setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
230
- setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
231
- KeyValueT = Tuple[torch.Tensor, torch.Tensor]
232
-
233
- def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
234
- """Replacement forward method for BloomCausalLM."""
235
- if deprecated_arguments.pop('position_ids', False) is not False:
236
- warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
237
- if len(deprecated_arguments) > 0:
238
- raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
239
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
240
- transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
241
- hidden_states = transformer_outputs[0]
242
- lm_logits = self.lm_head(hidden_states)
243
- loss = None
244
- if labels is not None:
245
- shift_logits = lm_logits[..., :-1, :].contiguous()
246
- shift_labels = labels[..., 1:].contiguous()
247
- (batch_size, seq_length, vocab_size) = shift_logits.shape
248
- loss_fct = CrossEntropyLoss()
249
- loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
250
- if not return_dict:
251
- output = (lm_logits,) + transformer_outputs[1:]
252
- return (loss,) + output if loss is not None else output
253
- return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
254
-
255
- def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
256
- if past:
257
- input_ids = input_ids[:, -1].unsqueeze(-1)
258
- bidirectional_mask = None
259
- if past[0][0].shape[0] == input_ids.shape[0]:
260
- past = self._convert_to_bloom_cache(past)
261
- else:
262
- bidirectional_mask = torch.ones_like(input_ids)
263
- return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
264
- setattr(model, 'forward', MethodType(forward, model))
265
- setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
266
- setattr(model, '_prefix_lm_converted', True)
267
- return model
268
-
269
- def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
270
- """Converts an OPT Causal LM to a Prefix LM.
271
-
272
- Supported HuggingFace model classes:
273
- - `OPTForCausalLM`
274
-
275
- See `convert_hf_causal_lm_to_prefix_lm` for more details.
276
- """
277
- if hasattr(model, '_prefix_lm_converted'):
278
- return model
279
- assert isinstance(model, OPTForCausalLM)
280
- assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
281
- setattr(model, '_original_forward', getattr(model, 'forward'))
282
- setattr(model, '_original_generate', getattr(model, 'generate'))
283
- model.model.decoder.bidirectional_mask = None
284
-
285
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
286
- combined_attention_mask = None
287
- if input_shape[-1] > 1:
288
- if self.bidirectional_mask == 'g':
289
- (bsz, src_length) = input_shape
290
- combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
291
- else:
292
- combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
293
- if self.bidirectional_mask is not None:
294
- assert attention_mask.shape == self.bidirectional_mask.shape
295
- expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
296
- combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
297
- if attention_mask is not None:
298
- expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
299
- combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
300
- return combined_attention_mask
301
- setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
302
-
303
- def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
304
-
305
- def call_og_forward():
306
- return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
307
- if bidirectional_mask is None:
308
- return call_og_forward()
309
- self.model.decoder.bidirectional_mask = bidirectional_mask
310
- try:
311
- outputs = call_og_forward()
312
- except:
313
- self.model.decoder.bidirectional_mask = None
314
- raise
315
- self.model.decoder.bidirectional_mask = None
316
- return outputs
317
-
318
- def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
319
- """Wraps original generate to enable PrefixLM-style attention."""
320
- self.model.decoder.bidirectional_mask = 'g'
321
- try:
322
- output = self._original_generate(*args, **kwargs)
323
- except:
324
- self.model.decoder.bidirectional_mask = None
325
- raise
326
- self.model.decoder.bidirectional_mask = None
327
- return output
328
- setattr(model, 'forward', MethodType(forward, model))
329
- setattr(model, 'generate', MethodType(generate, model))
330
- setattr(model, '_prefix_lm_converted', True)
331
- return model
332
- _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
333
- CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
334
-
335
- def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
336
- """Converts a HuggingFace Causal LM to a Prefix LM.
337
-
338
- Supported HuggingFace model classes:
339
- - `GPT2LMHeadModel`
340
- - `GPTNeoForCausalLM`
341
- - `GPTNeoXForCausalLM`
342
- - `GPTJForCausalLM`
343
- - `BloomForCausalLM`
344
- - `OPTForCausalLM`
345
-
346
- Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
347
- `generate` method and/or select underlying methods depending on the model class.
348
-
349
- These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
350
-
351
- Notes on training:
352
- To actually train the converted model as a Prefix LM, training batches will need to indicate
353
- the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
354
-
355
- **This is not a standard input and requires custom layers either within or after your dataloader.**
356
-
357
- In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
358
- such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
359
- That is, the prefix portion of the sequence should not generate any loss. Loss should only be
360
- generated by the target portion of the sequence.
361
-
362
- Notes on `GPTNeoForCausalLM`:
363
- To simplify the implementation, "global" and "local" attention layers are handled differently.
364
- For "global" layers, we handle conversion as described above. For "local" layers, which use a
365
- causal attention mask within a restricted local window, we do not alter the masking.
366
-
367
- Notes on `forward` method conversion:
368
- After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
369
- which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
370
- belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
371
- 0 indicates token positions belonging to the target.
372
-
373
- The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
374
- causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
375
- the causal masks before returning the result.
376
-
377
- Notes on `generate` method conversion:
378
- After conversion, the `generate` method will have the same signature but will internally
379
- convert all causal masks to be purely bidirectional, call the original `generate` method, and
380
- (where appropriate) reset the causal masks before returning the result.
381
-
382
- This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
383
- "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
384
- each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
385
- another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
386
- previously-generated tokens (also as expected in a Prefix LM).
387
-
388
- To preserve the API, the original methods are renamed to `_original_forward` and
389
- `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
390
- them, respectively. Although implementation details vary by model class.
391
- """
392
- if isinstance(model, _SUPPORTED_GPT_MODELS):
393
- return _convert_gpt_causal_lm_to_prefix_lm(model)
394
- elif isinstance(model, BloomForCausalLM):
395
- return _convert_bloom_causal_lm_to_prefix_lm(model)
396
- elif isinstance(model, OPTForCausalLM):
397
- return _convert_opt_causal_lm_to_prefix_lm(model)
398
- else:
399
- raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
400
-
401
- def add_bidirectional_mask_if_missing(batch: Dict[str, Any]):
402
- """Attempts to add bidirectional_mask to batch if missing.
403
-
404
- Raises:
405
- KeyError if bidirectional_mask is missing and can't be inferred
406
- """
407
- if 'bidirectional_mask' not in batch:
408
- if batch.get('mode', None) == 'icl_task':
409
- batch['bidirectional_mask'] = batch['attention_mask'].clone()
410
- for (i, continuation_indices) in enumerate(batch['continuation_indices']):
411
- batch['bidirectional_mask'][i, continuation_indices] = 0
412
- elif 'labels' in batch and 'attention_mask' in batch:
413
- batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
414
- else:
415
- raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/meta_init_context.py DELETED
@@ -1,94 +0,0 @@
1
- from contextlib import contextmanager
2
- import torch
3
- import torch.nn as nn
4
-
5
- @contextmanager
6
- def init_empty_weights(include_buffers: bool=False):
7
- """Meta initialization context manager.
8
-
9
- A context manager under which models are initialized with all parameters
10
- on the meta device, therefore creating an empty model. Useful when just
11
- initializing the model would blow the available RAM.
12
-
13
- Args:
14
- include_buffers (`bool`, *optional*, defaults to `False`): Whether or
15
- not to also put all buffers on the meta device while initializing.
16
-
17
- Example:
18
- ```python
19
- import torch.nn as nn
20
-
21
- # Initialize a model with 100 billions parameters in no time and without using any RAM.
22
- with init_empty_weights():
23
- tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
24
- ```
25
-
26
- <Tip warning={true}>
27
-
28
- Any model created under this context manager has no weights. As such you can't do something like
29
- `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
30
-
31
- </Tip>
32
- """
33
- with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
34
- yield f
35
-
36
- @contextmanager
37
- def init_on_device(device: torch.device, include_buffers: bool=False):
38
- """Device initialization context manager.
39
-
40
- A context manager under which models are initialized with all parameters
41
- on the specified device.
42
-
43
- Args:
44
- device (`torch.device`): Device to initialize all parameters on.
45
- include_buffers (`bool`, *optional*, defaults to `False`): Whether or
46
- not to also put all buffers on the meta device while initializing.
47
-
48
- Example:
49
- ```python
50
- import torch.nn as nn
51
-
52
- with init_on_device(device=torch.device("cuda")):
53
- tst = nn.Liner(100, 100) # on `cuda` device
54
- ```
55
- """
56
- old_register_parameter = nn.Module.register_parameter
57
- if include_buffers:
58
- old_register_buffer = nn.Module.register_buffer
59
-
60
- def register_empty_parameter(module, name, param):
61
- old_register_parameter(module, name, param)
62
- if param is not None:
63
- param_cls = type(module._parameters[name])
64
- kwargs = module._parameters[name].__dict__
65
- module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
66
-
67
- def register_empty_buffer(module, name, buffer):
68
- old_register_buffer(module, name, buffer)
69
- if buffer is not None:
70
- module._buffers[name] = module._buffers[name].to(device)
71
- if include_buffers:
72
- tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
73
- else:
74
- tensor_constructors_to_patch = {}
75
-
76
- def patch_tensor_constructor(fn):
77
-
78
- def wrapper(*args, **kwargs):
79
- kwargs['device'] = device
80
- return fn(*args, **kwargs)
81
- return wrapper
82
- try:
83
- nn.Module.register_parameter = register_empty_parameter
84
- if include_buffers:
85
- nn.Module.register_buffer = register_empty_buffer
86
- for torch_function_name in tensor_constructors_to_patch.keys():
87
- setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
88
- yield
89
- finally:
90
- nn.Module.register_parameter = old_register_parameter
91
- if include_buffers:
92
- nn.Module.register_buffer = old_register_buffer
93
- for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
94
- setattr(torch, torch_function_name, old_torch_function)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/modeling_mpt.py DELETED
@@ -1,331 +0,0 @@
1
- """A simple, flexible implementation of a GPT model.
2
-
3
- Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
- """
5
- import math
6
- import warnings
7
- from typing import List, Optional, Tuple, Union
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
12
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
- from .attention import attn_bias_shape, build_attn_bias
14
- from .blocks import MPTBlock
15
- from .custom_embedding import SharedEmbedding
16
- from .norm import NORM_CLASS_REGISTRY
17
- from .configuration_mpt import MPTConfig
18
- from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
19
- from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
20
- from .meta_init_context import init_empty_weights
21
- from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
22
- try:
23
- from .flash_attn_triton import flash_attn_func
24
- except:
25
- pass
26
- Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
27
-
28
- class MPTPreTrainedModel(PreTrainedModel):
29
- config_class = MPTConfig
30
- base_model_prefix = 'model'
31
- _no_split_modules = ['MPTBlock']
32
-
33
- class MPTModel(MPTPreTrainedModel):
34
-
35
- def __init__(self, config: MPTConfig):
36
- config._validate_config()
37
- super().__init__(config)
38
- self.attn_impl = config.attn_config['attn_impl']
39
- self.prefix_lm = config.attn_config['prefix_lm']
40
- self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
41
- self.alibi = config.attn_config['alibi']
42
- self.alibi_bias_max = config.attn_config['alibi_bias_max']
43
- if config.init_device == 'mixed':
44
- if dist.get_local_rank() == 0:
45
- config.init_device = 'cpu'
46
- else:
47
- config.init_device = 'meta'
48
- if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
49
- norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
50
- raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
51
- norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
52
- self.embedding_fraction = config.embedding_fraction
53
- self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
54
- if not self.alibi:
55
- self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
56
- self.emb_drop = nn.Dropout(config.emb_pdrop)
57
- self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
58
- self.norm_f = norm_class(config.d_model, device=config.init_device)
59
- if config.init_device != 'meta':
60
- print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.')
61
- self.apply(self.param_init_fn)
62
- self.is_causal = not self.prefix_lm
63
- self._attn_bias_initialized = False
64
- self.attn_bias = None
65
- self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
66
- if config.no_bias:
67
- for module in self.modules():
68
- if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
69
- if config.verbose:
70
- warnings.warn(f'Removing bias ({module.bias}) from {module}.')
71
- module.register_parameter('bias', None)
72
- if config.verbose and config.verbose > 2:
73
- print(self)
74
- if 'verbose' not in self.config.init_config:
75
- self.config.init_config['verbose'] = self.config.verbose
76
- if self.config.init_config['verbose'] > 1:
77
- init_fn_name = self.config.init_config['name']
78
- warnings.warn(f'Using {init_fn_name} initialization.')
79
- self.gradient_checkpointing = False
80
-
81
- def get_input_embeddings(self):
82
- return self.wte
83
-
84
- def set_input_embeddings(self, value):
85
- self.wte = value
86
-
87
- @torch.no_grad()
88
- def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
89
- if not self._attn_bias_initialized:
90
- if self.attn_bias_shape:
91
- self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
92
- self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
93
- self._attn_bias_initialized = True
94
- if self.attn_impl == 'flash':
95
- return (self.attn_bias, attention_mask)
96
- if self.attn_bias is not None:
97
- self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
98
- attn_bias = self.attn_bias
99
- if self.prefix_lm:
100
- assert isinstance(attn_bias, torch.Tensor)
101
- assert isinstance(prefix_mask, torch.Tensor)
102
- attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
103
- if self.attn_uses_sequence_id and sequence_id is not None:
104
- assert isinstance(attn_bias, torch.Tensor)
105
- attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
106
- if attention_mask is not None:
107
- s_k = attention_mask.shape[-1]
108
- if attn_bias is None:
109
- attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
110
- else:
111
- _s_k = max(0, attn_bias.size(-1) - s_k)
112
- attn_bias = attn_bias[:, :, :, _s_k:]
113
- if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
114
- raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
115
- min_val = torch.finfo(attn_bias.dtype).min
116
- attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
117
- return (attn_bias, None)
118
-
119
- def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
120
- (s_k, s_q) = attn_bias.shape[-2:]
121
- if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
122
- raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
123
- seq_len = prefix_mask.shape[-1]
124
- if seq_len > self.config.max_seq_len:
125
- raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
126
- attn_bias = attn_bias[..., :seq_len, :seq_len]
127
- causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
128
- prefix = prefix_mask.view(-1, 1, 1, seq_len)
129
- cannot_attend = ~torch.logical_or(causal, prefix.bool())
130
- min_val = torch.finfo(attn_bias.dtype).min
131
- attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
132
- return attn_bias
133
-
134
- def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
135
- seq_len = sequence_id.shape[-1]
136
- if seq_len > self.config.max_seq_len:
137
- raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
138
- attn_bias = attn_bias[..., :seq_len, :seq_len]
139
- cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
140
- min_val = torch.finfo(attn_bias.dtype).min
141
- attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
142
- return attn_bias
143
-
144
- def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None):
145
- return_dict = return_dict if return_dict is not None else self.config.return_dict
146
- use_cache = use_cache if use_cache is not None else self.config.use_cache
147
- if attention_mask is not None:
148
- attention_mask = attention_mask.bool()
149
- if prefix_mask is not None:
150
- prefix_mask = prefix_mask.bool()
151
- if not return_dict:
152
- raise NotImplementedError('return_dict False is not implemented yet for MPT')
153
- if output_attentions:
154
- if self.attn_impl != 'torch':
155
- raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
156
- if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
157
- raise NotImplementedError('MPT does not support training with left padding.')
158
- if self.prefix_lm and prefix_mask is None:
159
- raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
160
- if self.training:
161
- if self.attn_uses_sequence_id and sequence_id is None:
162
- raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
163
- elif self.attn_uses_sequence_id is False and sequence_id is not None:
164
- warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
165
- if input_ids is not None:
166
- S = input_ids.size(1)
167
- assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
168
- tok_emb = self.wte(input_ids)
169
- else:
170
- assert inputs_embeds is not None
171
- assert self.alibi, 'inputs_embeds is not implemented for MPT unless for alibi.'
172
- S = inputs_embeds.size(1)
173
- tok_emb = inputs_embeds
174
- if self.alibi:
175
- x = tok_emb
176
- else:
177
- past_position = 0
178
- if past_key_values is not None:
179
- if len(past_key_values) != self.config.n_layers:
180
- raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
181
- past_position = past_key_values[0][0].size(1)
182
- if self.attn_impl == 'torch':
183
- past_position = past_key_values[0][0].size(3)
184
- if S + past_position > self.config.max_seq_len:
185
- raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
186
- pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
187
- if attention_mask is not None:
188
- pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
189
- pos_emb = self.wpe(pos)
190
- x = tok_emb + pos_emb
191
- if self.embedding_fraction == 1:
192
- x = self.emb_drop(x)
193
- else:
194
- x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
195
- assert isinstance(self.emb_drop, nn.Module)
196
- x = self.emb_drop(x_shrunk)
197
- (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
198
- if use_cache and past_key_values is None:
199
- past_key_values = [() for _ in range(self.config.n_layers)]
200
- all_hidden_states = () if output_hidden_states else None
201
- all_self_attns = () if output_attentions else None
202
- for (b_idx, block) in enumerate(self.blocks):
203
- if output_hidden_states:
204
- assert all_hidden_states is not None
205
- all_hidden_states = all_hidden_states + (x,)
206
- past_key_value = past_key_values[b_idx] if past_key_values is not None else None
207
- if self.gradient_checkpointing and self.training:
208
- (x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(block, x, past_key_value, attn_bias, attention_mask, self.is_causal)
209
- else:
210
- (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
211
- if past_key_values is not None:
212
- past_key_values[b_idx] = past_key_value
213
- if output_attentions:
214
- assert all_self_attns is not None
215
- all_self_attns = all_self_attns + (attn_weights,)
216
- x = self.norm_f(x)
217
- if output_hidden_states:
218
- assert all_hidden_states is not None
219
- all_hidden_states = all_hidden_states + (x,)
220
- return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns)
221
-
222
- def param_init_fn(self, module):
223
- init_fn_name = self.config.init_config['name']
224
- MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
225
-
226
- def fsdp_wrap_fn(self, module):
227
- return isinstance(module, MPTBlock)
228
-
229
- def activation_checkpointing_fn(self, module):
230
- return isinstance(module, MPTBlock)
231
-
232
- class MPTForCausalLM(MPTPreTrainedModel):
233
-
234
- def __init__(self, config: MPTConfig):
235
- super().__init__(config)
236
- if not config.tie_word_embeddings:
237
- raise ValueError('MPTForCausalLM only supports tied word embeddings')
238
- print(f'Instantiating an MPTForCausalLM model from {__file__}')
239
- self.transformer = MPTModel(config)
240
- for child in self.transformer.children():
241
- if isinstance(child, torch.nn.ModuleList):
242
- continue
243
- if isinstance(child, torch.nn.Module):
244
- child._fsdp_wrap = True
245
- self.logit_scale = None
246
- if config.logit_scale is not None:
247
- logit_scale = config.logit_scale
248
- if isinstance(logit_scale, str):
249
- if logit_scale == 'inv_sqrt_d_model':
250
- logit_scale = 1 / math.sqrt(config.d_model)
251
- else:
252
- raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
253
- self.logit_scale = logit_scale
254
-
255
- def get_input_embeddings(self):
256
- return self.transformer.wte
257
-
258
- def set_input_embeddings(self, value):
259
- self.transformer.wte = value
260
-
261
- def get_output_embeddings(self):
262
- return self.transformer.wte
263
-
264
- def set_output_embeddings(self, new_embeddings):
265
- self.transformer.wte = new_embeddings
266
-
267
- def set_decoder(self, decoder):
268
- self.transformer = decoder
269
-
270
- def get_decoder(self):
271
- return self.transformer
272
-
273
- def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None):
274
- return_dict = return_dict if return_dict is not None else self.config.return_dict
275
- use_cache = use_cache if use_cache is not None else self.config.use_cache
276
- if inputs_embeds is not None:
277
- raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
278
- outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
279
- logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
280
- if self.logit_scale is not None:
281
- if self.logit_scale == 0:
282
- warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
283
- logits *= self.logit_scale
284
- loss = None
285
- if labels is not None:
286
- labels = torch.roll(labels, shifts=-1)
287
- labels[:, -1] = -100
288
- loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
289
- return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
290
-
291
- def param_init_fn(self, module):
292
- init_fn_name = self.config.init_config['name']
293
- MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
294
-
295
- def fsdp_wrap_fn(self, module):
296
- return isinstance(module, MPTBlock)
297
-
298
- def activation_checkpointing_fn(self, module):
299
- return isinstance(module, MPTBlock)
300
-
301
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
302
- if inputs_embeds is not None:
303
- raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
304
- attention_mask = kwargs['attention_mask'].bool()
305
- if attention_mask[:, -1].sum() != attention_mask.shape[0]:
306
- raise NotImplementedError('MPT does not support generation with right padding.')
307
- if self.transformer.attn_uses_sequence_id and self.training:
308
- sequence_id = torch.zeros_like(input_ids[:1])
309
- else:
310
- sequence_id = None
311
- if past_key_values is not None:
312
- input_ids = input_ids[:, -1].unsqueeze(-1)
313
- if self.transformer.prefix_lm:
314
- prefix_mask = torch.ones_like(attention_mask)
315
- if kwargs.get('use_cache') == False:
316
- raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
317
- else:
318
- prefix_mask = None
319
- return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
320
-
321
- @staticmethod
322
- def _reorder_cache(past_key_values, beam_idx):
323
- """Used by HuggingFace generate when using beam search with kv-caching.
324
-
325
- See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
326
- for an example in transformers.
327
- """
328
- reordered_past = []
329
- for layer_past in past_key_values:
330
- reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
331
- return reordered_past
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/norm.py DELETED
@@ -1,56 +0,0 @@
1
- import torch
2
-
3
- def _cast_if_autocast_enabled(tensor):
4
- if torch.is_autocast_enabled():
5
- if tensor.device.type == 'cuda':
6
- dtype = torch.get_autocast_gpu_dtype()
7
- elif tensor.device.type == 'cpu':
8
- dtype = torch.get_autocast_cpu_dtype()
9
- else:
10
- raise NotImplementedError()
11
- return tensor.to(dtype=dtype)
12
- return tensor
13
-
14
- class LPLayerNorm(torch.nn.LayerNorm):
15
-
16
- def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
17
- super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
18
-
19
- def forward(self, x):
20
- module_device = x.device
21
- downcast_x = _cast_if_autocast_enabled(x)
22
- downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
23
- downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
24
- with torch.autocast(enabled=False, device_type=module_device.type):
25
- return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
26
-
27
- def rms_norm(x, weight=None, eps=1e-05):
28
- output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
29
- if weight is not None:
30
- return output * weight
31
- return output
32
-
33
- class RMSNorm(torch.nn.Module):
34
-
35
- def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
36
- super().__init__()
37
- self.eps = eps
38
- if weight:
39
- self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
40
- else:
41
- self.register_parameter('weight', None)
42
-
43
- def forward(self, x):
44
- return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
45
-
46
- class LPRMSNorm(RMSNorm):
47
-
48
- def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
49
- super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
50
-
51
- def forward(self, x):
52
- downcast_x = _cast_if_autocast_enabled(x)
53
- downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
54
- with torch.autocast(enabled=False, device_type=x.device.type):
55
- return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
56
- NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mpt/param_init_fns.py DELETED
@@ -1,181 +0,0 @@
1
- import math
2
- import warnings
3
- from collections.abc import Sequence
4
- from functools import partial
5
- from typing import Optional, Tuple, Union
6
- import torch
7
- from torch import nn
8
- from .norm import NORM_CLASS_REGISTRY
9
-
10
- def torch_default_param_init_fn_(module: nn.Module, verbose: int=0, **kwargs):
11
- del kwargs
12
- if verbose > 1:
13
- warnings.warn(f"Initializing network using module's reset_parameters attribute")
14
- if hasattr(module, 'reset_parameters'):
15
- module.reset_parameters()
16
-
17
- def fused_init_helper_(module: nn.Module, init_fn_):
18
- _fused = getattr(module, '_fused', None)
19
- if _fused is None:
20
- raise RuntimeError(f'Internal logic error')
21
- (dim, splits) = _fused
22
- splits = (0, *splits, module.weight.size(dim))
23
- for (s, e) in zip(splits[:-1], splits[1:]):
24
- slice_indices = [slice(None)] * module.weight.ndim
25
- slice_indices[dim] = slice(s, e)
26
- init_fn_(module.weight[slice_indices])
27
-
28
- def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
29
- del kwargs
30
- if verbose > 1:
31
- warnings.warn(f'If model has bias parameters they are initialized to 0.')
32
- init_div_is_residual = init_div_is_residual
33
- if init_div_is_residual is False:
34
- div_is_residual = 1.0
35
- elif init_div_is_residual is True:
36
- div_is_residual = math.sqrt(2 * n_layers)
37
- elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
38
- div_is_residual = init_div_is_residual
39
- elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric():
40
- div_is_residual = float(init_div_is_residual)
41
- else:
42
- div_is_residual = 1.0
43
- raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
44
- if init_div_is_residual is not False:
45
- if verbose > 1:
46
- warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
47
- if isinstance(module, nn.Linear):
48
- if hasattr(module, '_fused'):
49
- fused_init_helper_(module, init_fn_)
50
- else:
51
- init_fn_(module.weight)
52
- if module.bias is not None:
53
- torch.nn.init.zeros_(module.bias)
54
- if init_div_is_residual is not False and getattr(module, '_is_residual', False):
55
- with torch.no_grad():
56
- module.weight.div_(div_is_residual)
57
- elif isinstance(module, nn.Embedding):
58
- if emb_init_std is not None:
59
- std = emb_init_std
60
- if std == 0:
61
- warnings.warn(f'Embedding layer initialized to 0.')
62
- emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
63
- if verbose > 1:
64
- warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
65
- elif emb_init_uniform_lim is not None:
66
- lim = emb_init_uniform_lim
67
- if isinstance(lim, Sequence):
68
- if len(lim) > 2:
69
- raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
70
- if lim[0] == lim[1]:
71
- warnings.warn(f'Embedding layer initialized to {lim[0]}.')
72
- else:
73
- if lim == 0:
74
- warnings.warn(f'Embedding layer initialized to 0.')
75
- lim = [-lim, lim]
76
- (a, b) = lim
77
- emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
78
- if verbose > 1:
79
- warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
80
- else:
81
- emb_init_fn_ = init_fn_
82
- emb_init_fn_(module.weight)
83
- elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
84
- if verbose > 1:
85
- warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
86
- if hasattr(module, 'weight') and module.weight is not None:
87
- torch.nn.init.ones_(module.weight)
88
- if hasattr(module, 'bias') and module.bias is not None:
89
- torch.nn.init.zeros_(module.bias)
90
- elif isinstance(module, nn.MultiheadAttention):
91
- if module._qkv_same_embed_dim:
92
- assert module.in_proj_weight is not None
93
- assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
94
- assert d_model is not None
95
- _d = d_model
96
- splits = (0, _d, 2 * _d, 3 * _d)
97
- for (s, e) in zip(splits[:-1], splits[1:]):
98
- init_fn_(module.in_proj_weight[s:e])
99
- else:
100
- assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
101
- assert module.in_proj_weight is None
102
- init_fn_(module.q_proj_weight)
103
- init_fn_(module.k_proj_weight)
104
- init_fn_(module.v_proj_weight)
105
- if module.in_proj_bias is not None:
106
- torch.nn.init.zeros_(module.in_proj_bias)
107
- if module.bias_k is not None:
108
- torch.nn.init.zeros_(module.bias_k)
109
- if module.bias_v is not None:
110
- torch.nn.init.zeros_(module.bias_v)
111
- init_fn_(module.out_proj.weight)
112
- if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
113
- with torch.no_grad():
114
- module.out_proj.weight.div_(div_is_residual)
115
- if module.out_proj.bias is not None:
116
- torch.nn.init.zeros_(module.out_proj.bias)
117
- else:
118
- for _ in module.parameters(recurse=False):
119
- raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
120
-
121
- def _normal_init_(std, mean=0.0):
122
- return partial(torch.nn.init.normal_, mean=mean, std=std)
123
-
124
- def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
125
- del kwargs
126
- init_fn_ = _normal_init_(std=std)
127
- if verbose > 1:
128
- warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
129
- generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
130
-
131
- def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
132
- del kwargs
133
- if init_std is None:
134
- raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
135
- _normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
136
-
137
- def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
138
- del kwargs
139
- std = math.sqrt(2 / (5 * d_model))
140
- _normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
141
-
142
- def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
143
- """From section 2.3.1 of GPT-NeoX-20B:
144
-
145
- An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
146
- see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
147
- and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
148
- """
149
- del kwargs
150
- residual_div = n_layers / math.sqrt(10)
151
- if verbose > 1:
152
- warnings.warn(f'setting init_div_is_residual to {residual_div}')
153
- small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
154
-
155
- def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
156
- del kwargs
157
- if verbose > 1:
158
- warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
159
- kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
160
- generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
161
-
162
- def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
163
- del kwargs
164
- if verbose > 1:
165
- warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
166
- kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
167
- generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
168
-
169
- def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
170
- del kwargs
171
- xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
172
- if verbose > 1:
173
- warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
174
- generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
175
-
176
- def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
177
- xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
178
- if verbose > 1:
179
- warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
180
- generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
181
- MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}