|
from contextlib import contextmanager |
|
import torch |
|
import torch.nn as nn |
|
|
|
@contextmanager |
|
def init_empty_weights(include_buffers: bool=False): |
|
"""Meta initialization context manager. |
|
|
|
A context manager under which models are initialized with all parameters |
|
on the meta device, therefore creating an empty model. Useful when just |
|
initializing the model would blow the available RAM. |
|
|
|
Args: |
|
include_buffers (`bool`, *optional*, defaults to `False`): Whether or |
|
not to also put all buffers on the meta device while initializing. |
|
|
|
Example: |
|
```python |
|
import torch.nn as nn |
|
|
|
# Initialize a model with 100 billions parameters in no time and without using any RAM. |
|
with init_empty_weights(): |
|
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) |
|
``` |
|
|
|
<Tip warning={true}> |
|
|
|
Any model created under this context manager has no weights. As such you can't do something like |
|
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`]. |
|
|
|
</Tip> |
|
""" |
|
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f: |
|
yield f |
|
|
|
@contextmanager |
|
def init_on_device(device: torch.device, include_buffers: bool=False): |
|
"""Device initialization context manager. |
|
|
|
A context manager under which models are initialized with all parameters |
|
on the specified device. |
|
|
|
Args: |
|
device (`torch.device`): Device to initialize all parameters on. |
|
include_buffers (`bool`, *optional*, defaults to `False`): Whether or |
|
not to also put all buffers on the meta device while initializing. |
|
|
|
Example: |
|
```python |
|
import torch.nn as nn |
|
|
|
with init_on_device(device=torch.device("cuda")): |
|
tst = nn.Liner(100, 100) # on `cuda` device |
|
``` |
|
""" |
|
old_register_parameter = nn.Module.register_parameter |
|
if include_buffers: |
|
old_register_buffer = nn.Module.register_buffer |
|
|
|
def register_empty_parameter(module, name, param): |
|
old_register_parameter(module, name, param) |
|
if param is not None: |
|
param_cls = type(module._parameters[name]) |
|
kwargs = module._parameters[name].__dict__ |
|
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs) |
|
|
|
def register_empty_buffer(module, name, buffer): |
|
old_register_buffer(module, name, buffer) |
|
if buffer is not None: |
|
module._buffers[name] = module._buffers[name].to(device) |
|
if include_buffers: |
|
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']} |
|
else: |
|
tensor_constructors_to_patch = {} |
|
|
|
def patch_tensor_constructor(fn): |
|
|
|
def wrapper(*args, **kwargs): |
|
kwargs['device'] = device |
|
return fn(*args, **kwargs) |
|
return wrapper |
|
try: |
|
nn.Module.register_parameter = register_empty_parameter |
|
if include_buffers: |
|
nn.Module.register_buffer = register_empty_buffer |
|
for torch_function_name in tensor_constructors_to_patch.keys(): |
|
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name))) |
|
yield |
|
finally: |
|
nn.Module.register_parameter = old_register_parameter |
|
if include_buffers: |
|
nn.Module.register_buffer = old_register_buffer |
|
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items(): |
|
setattr(torch, torch_function_name, old_torch_function) |