|
from typing import List, Optional, Tuple |
|
import warnings |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import math |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel |
|
from .mmalaya_arch import MMAlayaMetaModel, MMAlayaMetaForCausalLM |
|
from .configuration_mmalaya import MMAlayaMPTConfig |
|
|
|
|
|
class MMAlayaMPTModel(MMAlayaMetaModel, MPTModel): |
|
config_class = MMAlayaMPTConfig |
|
|
|
def __init__(self, config: MPTConfig): |
|
config.hidden_size = config.d_model |
|
super(MMAlayaMPTModel, self).__init__(config) |
|
|
|
def embed_tokens(self, x): |
|
return self.wte(x) |
|
|
|
|
|
class MMAlayaMPTForCausalLM(MPTForCausalLM, MMAlayaMetaForCausalLM): |
|
config_class = MMAlayaMPTConfig |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config): |
|
super(MPTForCausalLM, self).__init__(config) |
|
|
|
if not config.tie_word_embeddings: |
|
raise ValueError('MPTForCausalLM only supports tied word embeddings') |
|
self.transformer = MMAlayaMPTModel(config) |
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == 'inv_sqrt_d_model': |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") |
|
self.logit_scale = logit_scale |
|
|
|
def get_model(self): |
|
return self.transformer |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, MMAlayaMPTModel): |
|
module.gradient_checkpointing = value |
|
|
|
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None): |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
input_ids, _, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, None, attention_mask, past_key_values, labels, images) |
|
outputs = self.transformer(input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) |
|
|
|
logits = F.linear(outputs.last_hidden_state.to(self.transformer.wte.weight.device), self.transformer.wte.weight) |
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') |
|
logits *= self.logit_scale |
|
loss = None |
|
if labels is not None: |
|
labels = torch.roll(labels, shifts=-1) |
|
labels[:, -1] = -100 |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) |
|
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
if inputs_embeds is not None: |
|
raise NotImplementedError('inputs_embeds is not implemented for MPT yet') |
|
attention_mask = kwargs['attention_mask'].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError('MPT does not support generation with right padding.') |
|
if self.transformer.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if self.transformer.prefix_lm: |
|
prefix_mask = torch.ones_like(attention_mask) |
|
if kwargs.get('use_cache') == False: |
|
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') |
|
else: |
|
prefix_mask = None |
|
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)} |
|
|
|
|
|
AutoConfig.register("mmalaya", MMAlayaMPTConfig) |
|
AutoModelForCausalLM.register(MMAlayaMPTConfig, MMAlayaMPTForCausalLM) |
|
|