metadata
base_model: intfloat/multilingual-e5-base
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100
- loss:TripletLoss
widget:
- source_sentence: How many athletes from region 151 have won a medal?
sentences:
- >-
athletes refer to person_id; region 151 refers to region_id = 151; won a
medal refers to medal_id <> 4;
- Rio de Janeiro refers to city_name = 'Rio de Janeiro';
- >-
the highest number of participants refers to MAX(COUNT(person_id)); the
lowest number of participants refers to MIN(COUNT(person_id)); Which
summer Olympic refers to games_name where season = 'Summer';
- source_sentence: What is the id of Rio de Janeiro?
sentences:
- year refers to games_year;
- >-
athletes refer to person_id; region 151 refers to region_id = 151; won a
medal refers to medal_id <> 4;
- Rio de Janeiro refers to city_name = 'Rio de Janeiro';
- source_sentence: >-
Please list the Asian populations of all the residential areas with the
bad alias "URB San Joaquin".
sentences:
- '"URB San Joaquin" is the bad_alias'
- >-
name of congressman implies full name which refers to first_name,
last_name; Guanica is the city;
- '"URB San Joaquin" is the bad_alias'
- source_sentence: >-
State the male population for all zip code which were under the Berlin, NH
CBSA.
sentences:
- '"Berlin, NH" is the CBSA_name'
- '"Barre, VT" is the CBSA_name'
- >-
representative's full names refer to first_name, last_name; area which
has highest population in 2020 refers to MAX(population_2020);
- source_sentence: Which state has the most bad aliases?
sentences:
- '"York" is the city; ''ME'' is the state; type refers to CBSA_type'
- the most bad aliases refer to MAX(COUNT(bad_alias));
- precise location refers to latitude, longitude
SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on the train and test datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- train
- test
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DariaaaS/e5-args-1")
# Run inference
sentences = [
'Which state has the most bad aliases?',
'the most bad aliases refer to MAX(COUNT(bad_alias));',
'precise location refers to latitude, longitude',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Datasets
train
- Dataset: train
- Size: 80 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 11 tokens
- mean: 19.75 tokens
- max: 31 tokens
- min: 8 tokens
- mean: 18.12 tokens
- max: 33 tokens
- min: 8 tokens
- mean: 28.56 tokens
- max: 54 tokens
- Samples:
query positive negative How many zip codes are under Barre, VT?
"Barre, VT" is the CBSA_name
coordinates refers to latitude, longitude; latitude = '18.090875; longitude = '-66.867756'
How many zip codes are under Barre, VT?
"Barre, VT" is the CBSA_name
name of county refers to county
How many zip codes are under Barre, VT?
"Barre, VT" is the CBSA_name
median age over 40 refers to median_age > 40
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
test
- Dataset: test
- Size: 20 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 11 tokens
- mean: 12.5 tokens
- max: 14 tokens
- min: 14 tokens
- mean: 22.5 tokens
- max: 34 tokens
- min: 9 tokens
- mean: 23.45 tokens
- max: 56 tokens
- Samples:
query positive negative Where is competitor Estelle Nze Minko from?
Where competitor is from refers to region_name;
NOC code refers to noc; the heaviest refers to MAX(weight);
Where is competitor Estelle Nze Minko from?
Where competitor is from refers to region_name;
host city refers to city_name; the 1968 Winter Olympic Games refer to games_name = '1968 Winter';
Where is competitor Estelle Nze Minko from?
Where competitor is from refers to region_name;
the gold medal refers to medal_name = 'Gold';
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}