Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: Locutusque/TinyMistral-248M-v2
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
13 |
+
<details><summary>See axolotl config</summary>
|
14 |
+
|
15 |
+
axolotl version: `0.3.0`
|
16 |
+
```yaml
|
17 |
+
base_model: Locutusque/TinyMistral-248M-v2
|
18 |
+
model_type: MistralForCausalLM
|
19 |
+
is_mistral_derived_model: true
|
20 |
+
|
21 |
+
load_in_8bit: false
|
22 |
+
load_in_4bit: false
|
23 |
+
strict: false
|
24 |
+
|
25 |
+
dataset_processes: 20
|
26 |
+
|
27 |
+
datasets:
|
28 |
+
- path: epfl-llm/guidelines
|
29 |
+
type: completion
|
30 |
+
field: clean_text
|
31 |
+
- path: JeanKaddour/minipile
|
32 |
+
type: completion
|
33 |
+
field: text
|
34 |
+
|
35 |
+
dataset_prepared_path: TinyMistral-FFT-data
|
36 |
+
val_set_size: 0.001
|
37 |
+
output_dir: ./TinyMistral-FFT
|
38 |
+
|
39 |
+
sequence_len: 2048
|
40 |
+
sample_packing: false
|
41 |
+
pad_to_sequence_len: true
|
42 |
+
|
43 |
+
adapter:
|
44 |
+
lora_model_dir:
|
45 |
+
lora_r:
|
46 |
+
lora_alpha:
|
47 |
+
lora_dropout:
|
48 |
+
lora_target_linear:
|
49 |
+
lora_fan_in_fan_out:
|
50 |
+
|
51 |
+
# wandb configuration
|
52 |
+
wandb_project: TinyMistral-FFT
|
53 |
+
wandb_watch:
|
54 |
+
wandb_run_id:
|
55 |
+
wandb_log_model:
|
56 |
+
|
57 |
+
gradient_accumulation_steps: 8
|
58 |
+
micro_batch_size: 1
|
59 |
+
num_epochs: 1
|
60 |
+
optimizer: paged_adamw_32bit
|
61 |
+
lr_scheduler: constant
|
62 |
+
cosine_min_lr_ratio:
|
63 |
+
|
64 |
+
learning_rate: 0.00005
|
65 |
+
|
66 |
+
train_on_inputs: true
|
67 |
+
group_by_length: false
|
68 |
+
bf16: false
|
69 |
+
fp16: false
|
70 |
+
tf32: true
|
71 |
+
|
72 |
+
gradient_checkpointing: false
|
73 |
+
early_stopping_patience:
|
74 |
+
resume_from_checkpoint:
|
75 |
+
auto_resume_from_checkpoints: false
|
76 |
+
local_rank:
|
77 |
+
logging_steps: 1
|
78 |
+
xformers_attention:
|
79 |
+
flash_attention: false
|
80 |
+
flash_attn_cross_entropy: false
|
81 |
+
flash_attn_rms_norm: true
|
82 |
+
flash_attn_fuse_qkv: false
|
83 |
+
flash_attn_fuse_mlp: true
|
84 |
+
|
85 |
+
warmup_steps: 10
|
86 |
+
evals_per_epoch: 100
|
87 |
+
# eval_steps: 10
|
88 |
+
eval_table_size:
|
89 |
+
saves_per_epoch: 50
|
90 |
+
debug:
|
91 |
+
deepspeed: #deepspeed/zero2.json # multi-gpu only
|
92 |
+
weight_decay: 0
|
93 |
+
|
94 |
+
# tokens:
|
95 |
+
|
96 |
+
|
97 |
+
special_tokens:
|
98 |
+
bos_token: "<|bos|>"
|
99 |
+
eos_token: "<|endoftext|>"
|
100 |
+
unk_token: "<unk>"
|
101 |
+
```
|
102 |
+
|
103 |
+
</details><br>
|
104 |
+
|
105 |
+
# TinyMistral-StructureEvaluator
|
106 |
+
|
107 |
+
This model was trained from scratch on the None dataset.
|
108 |
+
|
109 |
+
## Model description
|
110 |
+
|
111 |
+
More information needed
|
112 |
+
|
113 |
+
## Intended uses & limitations
|
114 |
+
|
115 |
+
More information needed
|
116 |
+
|
117 |
+
## Training and evaluation data
|
118 |
+
|
119 |
+
More information needed
|
120 |
+
|
121 |
+
## Training procedure
|
122 |
+
|
123 |
+
### Training hyperparameters
|
124 |
+
|
125 |
+
The following hyperparameters were used during training:
|
126 |
+
- learning_rate: 5e-05
|
127 |
+
- train_batch_size: 1
|
128 |
+
- eval_batch_size: 1
|
129 |
+
- seed: 42
|
130 |
+
- gradient_accumulation_steps: 8
|
131 |
+
- total_train_batch_size: 8
|
132 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
133 |
+
- lr_scheduler_type: constant
|
134 |
+
- training_steps: 39460
|
135 |
+
|
136 |
+
### Training results
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
### Framework versions
|
141 |
+
|
142 |
+
- Transformers 4.37.0.dev0
|
143 |
+
- Pytorch 2.0.1+cu117
|
144 |
+
- Datasets 2.15.0
|
145 |
+
- Tokenizers 0.15.0
|