|
--- |
|
license: apache-2.0 |
|
base_model: ethanyt/guwenbert-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ched_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: guwenbert-large-CHED-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: ched_ner |
|
type: ched_ner |
|
config: ched_ner |
|
split: validation |
|
args: ched_ner |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7442799461641992 |
|
- name: Recall |
|
type: recall |
|
value: 0.8069066147859922 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7743290548424737 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9666064635130461 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# guwenbert-large-CHED-ner |
|
|
|
This model is a fine-tuned version of [ethanyt/guwenbert-large](https://huggingface.co/ethanyt/guwenbert-large) on the ched_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1905 |
|
- Precision: 0.7443 |
|
- Recall: 0.8069 |
|
- F1: 0.7743 |
|
- Accuracy: 0.9666 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 356 | 0.1420 | 0.6862 | 0.7573 | 0.72 | 0.9609 | |
|
| 0.2304 | 2.0 | 712 | 0.1324 | 0.6907 | 0.7972 | 0.7401 | 0.9624 | |
|
| 0.095 | 3.0 | 1068 | 0.1314 | 0.7268 | 0.7918 | 0.7579 | 0.9656 | |
|
| 0.095 | 4.0 | 1424 | 0.1348 | 0.7248 | 0.7967 | 0.7590 | 0.9659 | |
|
| 0.0613 | 5.0 | 1780 | 0.1525 | 0.7088 | 0.8147 | 0.7581 | 0.9635 | |
|
| 0.0397 | 6.0 | 2136 | 0.1635 | 0.7224 | 0.8127 | 0.7649 | 0.9648 | |
|
| 0.0397 | 7.0 | 2492 | 0.1693 | 0.7416 | 0.7986 | 0.7691 | 0.9662 | |
|
| 0.0261 | 8.0 | 2848 | 0.1809 | 0.7338 | 0.8059 | 0.7682 | 0.9657 | |
|
| 0.0164 | 9.0 | 3204 | 0.1904 | 0.7291 | 0.8127 | 0.7686 | 0.9655 | |
|
| 0.0124 | 10.0 | 3560 | 0.1905 | 0.7443 | 0.8069 | 0.7743 | 0.9666 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|