pid_yolov8 / README.md
DanielCerda's picture
add ultralytics model card
93b585b verified
|
raw
history blame
1.72 kB
---
tags:
- ultralyticsplus
- yolov8
- ultralytics
- yolo
- vision
- object-detection
- pytorch
library_name: ultralytics
library_version: 8.0.239
inference: false
datasets:
- DanielCerda/pid-object-detection
model-index:
- name: DanielCerda/pid_yolov8
results:
- task:
type: object-detection
dataset:
type: DanielCerda/pid-object-detection
name: pid-object-detection
split: validation
metrics:
- type: precision # since mAP@0.5 is not available on hf.co/metrics
value: 0.97736 # min: 0.0 - max: 1.0
name: mAP@0.5(box)
---
<div align="center">
<img width="640" alt="DanielCerda/pid_yolov8" src="https://huggingface.co/DanielCerda/pid_yolov8/resolve/main/thumbnail.jpg">
</div>
### Supported Labels
```
['ball-valve', 'butterfly-valve', 'centrifugal-pump', 'check-valve', 'gate-valve']
```
### How to use
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
```bash
pip install ultralyticsplus==0.0.29 ultralytics==8.0.239
```
- Load model and perform prediction:
```python
from ultralyticsplus import YOLO, render_result
# load model
model = YOLO('DanielCerda/pid_yolov8')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()
```