Dakie's picture
update model card README.md
40fe4c1
metadata
language:
  - mn
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: mongolian-roberta-base
    results: []

mongolian-roberta-base

This model is a fine-tuned version of bayartsogt/mongolian-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1308
  • Precision: 0.9243
  • Recall: 0.9322
  • F1: 0.9283
  • Accuracy: 0.9799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1632 1.0 477 0.0908 0.8293 0.8817 0.8547 0.9682
0.0607 2.0 954 0.0920 0.8506 0.8898 0.8698 0.9712
0.0331 3.0 1431 0.0975 0.9192 0.9267 0.9229 0.9779
0.0148 4.0 1908 0.1024 0.9179 0.9294 0.9236 0.9786
0.0087 5.0 2385 0.1091 0.9196 0.9296 0.9246 0.9796
0.0052 6.0 2862 0.1222 0.9240 0.9323 0.9281 0.9794
0.0033 7.0 3339 0.1233 0.9214 0.9317 0.9265 0.9796
0.0024 8.0 3816 0.1310 0.9250 0.9315 0.9282 0.9797
0.0016 9.0 4293 0.1308 0.9243 0.9322 0.9283 0.9799

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3