CartPole / README.md
Dabe's picture
Update README.md
eb496e7
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1**.
```python
# ----------- Libraries -----------
import numpy as np
from collections import deque
import matplotlib.pyplot as plt
%matplotlib inline
# PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
# Gym
import gym
import gym_pygame
#------------- Enviroment -----------
env_id = "CartPole-v1"
# Create the env
env = gym.make(env_id)
# Create the evaluation env
eval_env = gym.make(env_id)
# Get the state space and action space
s_size = env.observation_space.shape[0]
a_size = env.action_space.n
#------------ Policy --------------
class Policy(nn.Module):
def __init__(self, s_size, a_size, h_size):
super(Policy, self).__init__()
# Create two fully connected layers
self.fc1 = nn.Linear(s_size, h_size)
self.fc2 = nn.Linear(h_size, a_size)
def forward(self, x):
# Define the forward pass
# state goes to fc1 then we apply ReLU activation function
x = F.relu(self.fc1(x))
# fc1 outputs goes to fc2
x = self.fc2(x)
# We output the softmax
return F.softmax(x, dim=1)
def act(self, state):
"""
Given a state, take action
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
probs = self.forward(state).cpu()
m = Categorical(probs)
action = m.sample()
return action.item(), m.log_prob(action)
#--------------- Reinforce --------------
def reinforce(policy, optimizer, n_training_episodes, max_t, gamma, print_every):
# Help us to calculate the score during the training
scores_deque = deque(maxlen=100)
scores = []
# Line 3 of pseudocode
for i_episode in range(1, n_training_episodes+1):
saved_log_probs = []
rewards = []
state = env.reset()
# Line 4 of pseudocode
for t in range(max_t):
action, log_prob = policy.act(state)
saved_log_probs.append(log_prob)
state, reward, done, _ = env.step(action)
rewards.append(reward)
if done:
break
scores_deque.append(sum(rewards))
scores.append(sum(rewards))
# Line 6 of pseudocode: calculate the return
returns = deque(maxlen=max_t)
n_steps = len(rewards)
# Compute the discounted returns at each timestep,
# as the sum of the gamma-discounted return at time t (G_t) + the reward at time t
# In O(N) time, where N is the number of time steps
# (this definition of the discounted return G_t follows the definition of this quantity
# shown at page 44 of Sutton&Barto 2017 2nd draft)
# G_t = r_(t+1) + r_(t+2) + ...
# Given this formulation, the returns at each timestep t can be computed
# by re-using the computed future returns G_(t+1) to compute the current return G_t
# G_t = r_(t+1) + gamma*G_(t+1)
# G_(t-1) = r_t + gamma* G_t
# (this follows a dynamic programming approach, with which we memorize solutions in order
# to avoid computing them multiple times)
# This is correct since the above is equivalent to (see also page 46 of Sutton&Barto 2017 2nd draft)
# G_(t-1) = r_t + gamma*r_(t+1) + gamma*gamma*r_(t+2) + ...
## Given the above, we calculate the returns at timestep t as:
# gamma[t] * return[t] + reward[t]
#
## We compute this starting from the last timestep to the first, in order
## to employ the formula presented above and avoid redundant computations that would be needed
## if we were to do it from first to last.
## Hence, the queue "returns" will hold the returns in chronological order, from t=0 to t=n_steps
## thanks to the appendleft() function which allows to append to the position 0 in constant time O(1)
## a normal python list would instead require O(N) to do this.
for t in range(n_steps)[::-1]:
disc_return_t = (returns[0] if len(returns)>0 else 0)
returns.appendleft( gamma*disc_return_t + rewards[t] )
## standardization of the returns is employed to make training more stable
eps = np.finfo(np.float32).eps.item()
## eps is the smallest representable float, which is
# added to the standard deviation of the returns to avoid numerical instabilities
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)
# Line 7:
policy_loss = []
for log_prob, disc_return in zip(saved_log_probs, returns):
policy_loss.append(-log_prob * disc_return)
policy_loss = torch.cat(policy_loss).sum()
# Line 8: PyTorch prefers gradient descent
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()
if i_episode % print_every == 0:
print('Episode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)))
return scores
# ---------- Training Hyperparameters ----------
cartpole_hyperparameters = {
"h_size": 16,
"n_training_episodes": 1000,
"n_evaluation_episodes": 100,
"max_t": 1000,
"gamma": 1.0,
"lr": 1e-2,
"env_id": env_id,
"state_space": s_size,
"action_space": a_size,
}
# ---------- Policy and optimizer ----------
# Create policy and place it to the device
cartpole_policy = Policy(cartpole_hyperparameters["state_space"], cartpole_hyperparameters["action_space"], cartpole_hyperparameters["h_size"]).to(device)
cartpole_optimizer = optim.Adam(cartpole_policy.parameters(), lr=cartpole_hyperparameters["lr"])
# --------- Training -----------
scores = reinforce(cartpole_policy,
cartpole_optimizer,
cartpole_hyperparameters["n_training_episodes"],
cartpole_hyperparameters["max_t"],
cartpole_hyperparameters["gamma"],
100)
```