zephyr-7b-gpo-iter0 / README.md
lole25's picture
Model save
407a137 verified
|
raw
history blame
3.84 kB
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: zephyr-7b-gpo-iter0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-gpo-iter0
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0258
- Rewards/chosen: -0.0580
- Rewards/rejected: -0.0061
- Rewards/accuracies: 0.3380
- Rewards/margins: -0.0519
- Logps/rejected: -249.4468
- Logps/chosen: -274.3866
- Logits/rejected: -2.2108
- Logits/chosen: -2.4070
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0008 | 0.2 | 100 | 0.0019 | -0.0111 | -0.0138 | 0.5300 | 0.0027 | -250.2170 | -269.6990 | -2.2026 | -2.4007 |
| 0.0006 | 0.4 | 200 | 0.0029 | -0.0237 | -0.0230 | 0.4910 | -0.0007 | -251.1392 | -270.9541 | -2.2051 | -2.4034 |
| 0.001 | 0.6 | 300 | 0.0019 | -0.0120 | -0.0142 | 0.5310 | 0.0022 | -250.2602 | -269.7912 | -2.2008 | -2.3984 |
| 0.0011 | 0.8 | 400 | 0.0023 | -0.0201 | -0.0211 | 0.5010 | 0.0011 | -250.9541 | -270.5950 | -2.1993 | -2.3968 |
| 0.0008 | 1.0 | 500 | 0.0021 | -0.0170 | -0.0189 | 0.5065 | 0.0019 | -250.7260 | -270.2850 | -2.1982 | -2.3960 |
| 0.044 | 1.2 | 600 | 0.0091 | -0.0053 | 0.0198 | 0.3600 | -0.0252 | -246.8548 | -269.1194 | -2.1940 | -2.3899 |
| 0.0682 | 1.4 | 700 | 0.0191 | -0.0345 | 0.0086 | 0.3450 | -0.0431 | -247.9818 | -272.0423 | -2.2035 | -2.3992 |
| 0.0505 | 1.6 | 800 | 0.0237 | -0.0497 | -0.0001 | 0.3405 | -0.0496 | -248.8542 | -273.5587 | -2.2094 | -2.4056 |
| 0.0243 | 1.8 | 900 | 0.0259 | -0.0581 | -0.0062 | 0.3340 | -0.0519 | -249.4570 | -274.3967 | -2.2117 | -2.4081 |
| 0.0697 | 2.0 | 1000 | 0.0258 | -0.0580 | -0.0061 | 0.3380 | -0.0519 | -249.4468 | -274.3866 | -2.2108 | -2.4070 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.2