BraylonDash's picture
Model save
cec2911 verified
|
raw
history blame
2.29 kB
---
license: mit
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: phi-2-gpo-test-longest-iter-v1-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-2-gpo-test-longest-iter-v1-0
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0004
- Rewards/chosen: 0.0012
- Rewards/rejected: 0.0010
- Rewards/accuracies: 0.4995
- Rewards/margins: 0.0002
- Logps/rejected: -233.4380
- Logps/chosen: -256.4973
- Logits/rejected: 0.8990
- Logits/chosen: 0.8417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0003 | 1.6 | 100 | 0.0004 | 0.0006 | 0.0004 | 0.4855 | 0.0002 | -233.5017 | -256.5565 | 0.8960 | 0.8387 |
| 0.0003 | 3.2 | 200 | 0.0004 | 0.0013 | 0.0009 | 0.5100 | 0.0004 | -233.4492 | -256.4811 | 0.8984 | 0.8412 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.2.1+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2