metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- article500v2_wikigold_split
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Article_500v2_NER_Model_3Epochs_UNAUGMENTED
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: article500v2_wikigold_split
type: article500v2_wikigold_split
args: default
metrics:
- name: Precision
type: precision
value: 0.6510177281680893
- name: Recall
type: recall
value: 0.7377232142857143
- name: F1
type: f1
value: 0.6916637600279038
- name: Accuracy
type: accuracy
value: 0.936698943937827
Article_500v2_NER_Model_3Epochs_UNAUGMENTED
This model is a fine-tuned version of bert-base-cased on the article500v2_wikigold_split dataset. It achieves the following results on the evaluation set:
- Loss: 0.1886
- Precision: 0.6510
- Recall: 0.7377
- F1: 0.6917
- Accuracy: 0.9367
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 62 | 0.2863 | 0.4448 | 0.5990 | 0.5105 | 0.8927 |
No log | 2.0 | 124 | 0.1965 | 0.6070 | 0.7321 | 0.6637 | 0.9308 |
No log | 3.0 | 186 | 0.1886 | 0.6510 | 0.7377 | 0.6917 | 0.9367 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6