|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- recall |
|
- precision |
|
- f1 |
|
model-index: |
|
- name: DL-Project/hatespeech_wav2vec2 |
|
results: [] |
|
datasets: |
|
- DL-Project/DL_Audio_Hatespeech_Dataset |
|
language: |
|
- en |
|
widget: |
|
- src: example_hate.wav |
|
example_title: Hate Speech Example |
|
- src: example_non_hate.wav |
|
example_title: Non-Hate Speech Example |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hatespeech_wav2vec2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6562 |
|
- Accuracy: 0.6216 |
|
- Recall: 0.7853 |
|
- Precision: 0.5990 |
|
- F1: 0.6796 |
|
|
|
It achieves the following results on the test set: |
|
- Loss: 0.6597 |
|
- Accuracy: 0.6192 |
|
- Recall: 0.7822 |
|
- Precision: 0.5944 |
|
- F1: 0.6755 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 0.9935 | 77 | 0.6871 | 0.5430 | 0.9021 | 0.5311 | 0.6686 | |
|
| 0.6899 | 2.0 | 155 | 0.6779 | 0.5647 | 0.9021 | 0.5448 | 0.6793 | |
|
| 0.6761 | 2.9935 | 232 | 0.6649 | 0.5934 | 0.5541 | 0.6131 | 0.5821 | |
|
| 0.6607 | 4.0 | 310 | 0.6550 | 0.6289 | 0.6504 | 0.6334 | 0.6417 | |
|
| 0.6607 | 4.9935 | 387 | 0.6562 | 0.6216 | 0.7853 | 0.5990 | 0.6796 | |
|
| 0.6403 | 6.0 | 465 | 0.6578 | 0.6357 | 0.6969 | 0.6298 | 0.6617 | |
|
| 0.6129 | 6.9935 | 542 | 0.6623 | 0.6313 | 0.7277 | 0.6184 | 0.6686 | |
|
| 0.6024 | 8.0 | 620 | 0.6745 | 0.6345 | 0.7490 | 0.6174 | 0.6769 | |
|
| 0.5779 | 8.9935 | 697 | 0.6807 | 0.6406 | 0.6567 | 0.6460 | 0.6513 | |
|
| 0.5779 | 9.9355 | 770 | 0.6798 | 0.6337 | 0.6993 | 0.6270 | 0.6612 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |