rheinfra commited on
Commit
0d9516f
1 Parent(s): ed760fc

Upload EfficientNetForImageClassification

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +907 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/efficientnet-b1",
3
+ "architectures": [
4
+ "EfficientNetForImageClassification"
5
+ ],
6
+ "batch_norm_eps": 0.001,
7
+ "batch_norm_momentum": 0.99,
8
+ "depth_coefficient": 1.1,
9
+ "depth_divisor": 8,
10
+ "depthwise_padding": [
11
+ 16
12
+ ],
13
+ "drop_connect_rate": 0.2,
14
+ "dropout_rate": 0.2,
15
+ "expand_ratios": [
16
+ 1,
17
+ 6,
18
+ 6,
19
+ 6,
20
+ 6,
21
+ 6,
22
+ 6
23
+ ],
24
+ "hidden_act": "swish",
25
+ "hidden_dim": 1280,
26
+ "id2label": {
27
+ "0": "LABEL_0",
28
+ "1": "LABEL_1",
29
+ "2": "LABEL_2",
30
+ "3": "LABEL_3",
31
+ "4": "LABEL_4",
32
+ "5": "LABEL_5",
33
+ "6": "LABEL_6",
34
+ "7": "LABEL_7",
35
+ "8": "LABEL_8",
36
+ "9": "LABEL_9",
37
+ "10": "LABEL_10",
38
+ "11": "LABEL_11",
39
+ "12": "LABEL_12",
40
+ "13": "LABEL_13",
41
+ "14": "LABEL_14",
42
+ "15": "LABEL_15",
43
+ "16": "LABEL_16",
44
+ "17": "LABEL_17",
45
+ "18": "LABEL_18",
46
+ "19": "LABEL_19",
47
+ "20": "LABEL_20",
48
+ "21": "LABEL_21",
49
+ "22": "LABEL_22",
50
+ "23": "LABEL_23",
51
+ "24": "LABEL_24",
52
+ "25": "LABEL_25",
53
+ "26": "LABEL_26",
54
+ "27": "LABEL_27",
55
+ "28": "LABEL_28",
56
+ "29": "LABEL_29",
57
+ "30": "LABEL_30",
58
+ "31": "LABEL_31",
59
+ "32": "LABEL_32",
60
+ "33": "LABEL_33",
61
+ "34": "LABEL_34",
62
+ "35": "LABEL_35",
63
+ "36": "LABEL_36",
64
+ "37": "LABEL_37",
65
+ "38": "LABEL_38",
66
+ "39": "LABEL_39",
67
+ "40": "LABEL_40",
68
+ "41": "LABEL_41",
69
+ "42": "LABEL_42",
70
+ "43": "LABEL_43",
71
+ "44": "LABEL_44",
72
+ "45": "LABEL_45",
73
+ "46": "LABEL_46",
74
+ "47": "LABEL_47",
75
+ "48": "LABEL_48",
76
+ "49": "LABEL_49",
77
+ "50": "LABEL_50",
78
+ "51": "LABEL_51",
79
+ "52": "LABEL_52",
80
+ "53": "LABEL_53",
81
+ "54": "LABEL_54",
82
+ "55": "LABEL_55",
83
+ "56": "LABEL_56",
84
+ "57": "LABEL_57",
85
+ "58": "LABEL_58",
86
+ "59": "LABEL_59",
87
+ "60": "LABEL_60",
88
+ "61": "LABEL_61",
89
+ "62": "LABEL_62",
90
+ "63": "LABEL_63",
91
+ "64": "LABEL_64",
92
+ "65": "LABEL_65",
93
+ "66": "LABEL_66",
94
+ "67": "LABEL_67",
95
+ "68": "LABEL_68",
96
+ "69": "LABEL_69",
97
+ "70": "LABEL_70",
98
+ "71": "LABEL_71",
99
+ "72": "LABEL_72",
100
+ "73": "LABEL_73",
101
+ "74": "LABEL_74",
102
+ "75": "LABEL_75",
103
+ "76": "LABEL_76",
104
+ "77": "LABEL_77",
105
+ "78": "LABEL_78",
106
+ "79": "LABEL_79",
107
+ "80": "LABEL_80",
108
+ "81": "LABEL_81",
109
+ "82": "LABEL_82",
110
+ "83": "LABEL_83",
111
+ "84": "LABEL_84",
112
+ "85": "LABEL_85",
113
+ "86": "LABEL_86",
114
+ "87": "LABEL_87",
115
+ "88": "LABEL_88",
116
+ "89": "LABEL_89",
117
+ "90": "LABEL_90",
118
+ "91": "LABEL_91",
119
+ "92": "LABEL_92",
120
+ "93": "LABEL_93",
121
+ "94": "LABEL_94",
122
+ "95": "LABEL_95",
123
+ "96": "LABEL_96",
124
+ "97": "LABEL_97",
125
+ "98": "LABEL_98",
126
+ "99": "LABEL_99",
127
+ "100": "LABEL_100",
128
+ "101": "LABEL_101",
129
+ "102": "LABEL_102",
130
+ "103": "LABEL_103",
131
+ "104": "LABEL_104",
132
+ "105": "LABEL_105",
133
+ "106": "LABEL_106",
134
+ "107": "LABEL_107",
135
+ "108": "LABEL_108",
136
+ "109": "LABEL_109",
137
+ "110": "LABEL_110",
138
+ "111": "LABEL_111",
139
+ "112": "LABEL_112",
140
+ "113": "LABEL_113",
141
+ "114": "LABEL_114",
142
+ "115": "LABEL_115",
143
+ "116": "LABEL_116",
144
+ "117": "LABEL_117",
145
+ "118": "LABEL_118",
146
+ "119": "LABEL_119",
147
+ "120": "LABEL_120",
148
+ "121": "LABEL_121",
149
+ "122": "LABEL_122",
150
+ "123": "LABEL_123",
151
+ "124": "LABEL_124",
152
+ "125": "LABEL_125",
153
+ "126": "LABEL_126",
154
+ "127": "LABEL_127",
155
+ "128": "LABEL_128",
156
+ "129": "LABEL_129",
157
+ "130": "LABEL_130",
158
+ "131": "LABEL_131",
159
+ "132": "LABEL_132",
160
+ "133": "LABEL_133",
161
+ "134": "LABEL_134",
162
+ "135": "LABEL_135",
163
+ "136": "LABEL_136",
164
+ "137": "LABEL_137",
165
+ "138": "LABEL_138",
166
+ "139": "LABEL_139",
167
+ "140": "LABEL_140",
168
+ "141": "LABEL_141",
169
+ "142": "LABEL_142",
170
+ "143": "LABEL_143",
171
+ "144": "LABEL_144",
172
+ "145": "LABEL_145",
173
+ "146": "LABEL_146",
174
+ "147": "LABEL_147",
175
+ "148": "LABEL_148",
176
+ "149": "LABEL_149",
177
+ "150": "LABEL_150",
178
+ "151": "LABEL_151",
179
+ "152": "LABEL_152",
180
+ "153": "LABEL_153",
181
+ "154": "LABEL_154",
182
+ "155": "LABEL_155",
183
+ "156": "LABEL_156",
184
+ "157": "LABEL_157",
185
+ "158": "LABEL_158",
186
+ "159": "LABEL_159",
187
+ "160": "LABEL_160",
188
+ "161": "LABEL_161",
189
+ "162": "LABEL_162",
190
+ "163": "LABEL_163",
191
+ "164": "LABEL_164",
192
+ "165": "LABEL_165",
193
+ "166": "LABEL_166",
194
+ "167": "LABEL_167",
195
+ "168": "LABEL_168",
196
+ "169": "LABEL_169",
197
+ "170": "LABEL_170",
198
+ "171": "LABEL_171",
199
+ "172": "LABEL_172",
200
+ "173": "LABEL_173",
201
+ "174": "LABEL_174",
202
+ "175": "LABEL_175",
203
+ "176": "LABEL_176",
204
+ "177": "LABEL_177",
205
+ "178": "LABEL_178",
206
+ "179": "LABEL_179",
207
+ "180": "LABEL_180",
208
+ "181": "LABEL_181",
209
+ "182": "LABEL_182",
210
+ "183": "LABEL_183",
211
+ "184": "LABEL_184",
212
+ "185": "LABEL_185",
213
+ "186": "LABEL_186",
214
+ "187": "LABEL_187",
215
+ "188": "LABEL_188",
216
+ "189": "LABEL_189",
217
+ "190": "LABEL_190",
218
+ "191": "LABEL_191",
219
+ "192": "LABEL_192",
220
+ "193": "LABEL_193",
221
+ "194": "LABEL_194",
222
+ "195": "LABEL_195",
223
+ "196": "LABEL_196",
224
+ "197": "LABEL_197",
225
+ "198": "LABEL_198",
226
+ "199": "LABEL_199",
227
+ "200": "LABEL_200",
228
+ "201": "LABEL_201",
229
+ "202": "LABEL_202",
230
+ "203": "LABEL_203",
231
+ "204": "LABEL_204",
232
+ "205": "LABEL_205",
233
+ "206": "LABEL_206",
234
+ "207": "LABEL_207",
235
+ "208": "LABEL_208",
236
+ "209": "LABEL_209",
237
+ "210": "LABEL_210",
238
+ "211": "LABEL_211",
239
+ "212": "LABEL_212",
240
+ "213": "LABEL_213",
241
+ "214": "LABEL_214",
242
+ "215": "LABEL_215",
243
+ "216": "LABEL_216",
244
+ "217": "LABEL_217",
245
+ "218": "LABEL_218",
246
+ "219": "LABEL_219",
247
+ "220": "LABEL_220",
248
+ "221": "LABEL_221",
249
+ "222": "LABEL_222",
250
+ "223": "LABEL_223",
251
+ "224": "LABEL_224",
252
+ "225": "LABEL_225",
253
+ "226": "LABEL_226",
254
+ "227": "LABEL_227",
255
+ "228": "LABEL_228",
256
+ "229": "LABEL_229",
257
+ "230": "LABEL_230",
258
+ "231": "LABEL_231",
259
+ "232": "LABEL_232",
260
+ "233": "LABEL_233",
261
+ "234": "LABEL_234",
262
+ "235": "LABEL_235",
263
+ "236": "LABEL_236",
264
+ "237": "LABEL_237",
265
+ "238": "LABEL_238",
266
+ "239": "LABEL_239",
267
+ "240": "LABEL_240",
268
+ "241": "LABEL_241",
269
+ "242": "LABEL_242",
270
+ "243": "LABEL_243",
271
+ "244": "LABEL_244",
272
+ "245": "LABEL_245",
273
+ "246": "LABEL_246",
274
+ "247": "LABEL_247",
275
+ "248": "LABEL_248",
276
+ "249": "LABEL_249",
277
+ "250": "LABEL_250",
278
+ "251": "LABEL_251",
279
+ "252": "LABEL_252",
280
+ "253": "LABEL_253",
281
+ "254": "LABEL_254",
282
+ "255": "LABEL_255",
283
+ "256": "LABEL_256",
284
+ "257": "LABEL_257",
285
+ "258": "LABEL_258",
286
+ "259": "LABEL_259",
287
+ "260": "LABEL_260",
288
+ "261": "LABEL_261",
289
+ "262": "LABEL_262",
290
+ "263": "LABEL_263",
291
+ "264": "LABEL_264",
292
+ "265": "LABEL_265",
293
+ "266": "LABEL_266",
294
+ "267": "LABEL_267",
295
+ "268": "LABEL_268",
296
+ "269": "LABEL_269",
297
+ "270": "LABEL_270",
298
+ "271": "LABEL_271",
299
+ "272": "LABEL_272",
300
+ "273": "LABEL_273",
301
+ "274": "LABEL_274",
302
+ "275": "LABEL_275",
303
+ "276": "LABEL_276",
304
+ "277": "LABEL_277",
305
+ "278": "LABEL_278",
306
+ "279": "LABEL_279",
307
+ "280": "LABEL_280",
308
+ "281": "LABEL_281",
309
+ "282": "LABEL_282",
310
+ "283": "LABEL_283",
311
+ "284": "LABEL_284",
312
+ "285": "LABEL_285",
313
+ "286": "LABEL_286",
314
+ "287": "LABEL_287",
315
+ "288": "LABEL_288",
316
+ "289": "LABEL_289",
317
+ "290": "LABEL_290",
318
+ "291": "LABEL_291",
319
+ "292": "LABEL_292",
320
+ "293": "LABEL_293",
321
+ "294": "LABEL_294",
322
+ "295": "LABEL_295",
323
+ "296": "LABEL_296",
324
+ "297": "LABEL_297",
325
+ "298": "LABEL_298",
326
+ "299": "LABEL_299",
327
+ "300": "LABEL_300",
328
+ "301": "LABEL_301",
329
+ "302": "LABEL_302",
330
+ "303": "LABEL_303",
331
+ "304": "LABEL_304",
332
+ "305": "LABEL_305",
333
+ "306": "LABEL_306",
334
+ "307": "LABEL_307",
335
+ "308": "LABEL_308",
336
+ "309": "LABEL_309",
337
+ "310": "LABEL_310",
338
+ "311": "LABEL_311",
339
+ "312": "LABEL_312",
340
+ "313": "LABEL_313",
341
+ "314": "LABEL_314",
342
+ "315": "LABEL_315",
343
+ "316": "LABEL_316",
344
+ "317": "LABEL_317",
345
+ "318": "LABEL_318",
346
+ "319": "LABEL_319",
347
+ "320": "LABEL_320",
348
+ "321": "LABEL_321",
349
+ "322": "LABEL_322",
350
+ "323": "LABEL_323",
351
+ "324": "LABEL_324",
352
+ "325": "LABEL_325",
353
+ "326": "LABEL_326",
354
+ "327": "LABEL_327",
355
+ "328": "LABEL_328",
356
+ "329": "LABEL_329",
357
+ "330": "LABEL_330",
358
+ "331": "LABEL_331",
359
+ "332": "LABEL_332",
360
+ "333": "LABEL_333",
361
+ "334": "LABEL_334",
362
+ "335": "LABEL_335",
363
+ "336": "LABEL_336",
364
+ "337": "LABEL_337",
365
+ "338": "LABEL_338",
366
+ "339": "LABEL_339",
367
+ "340": "LABEL_340",
368
+ "341": "LABEL_341",
369
+ "342": "LABEL_342",
370
+ "343": "LABEL_343",
371
+ "344": "LABEL_344",
372
+ "345": "LABEL_345",
373
+ "346": "LABEL_346",
374
+ "347": "LABEL_347",
375
+ "348": "LABEL_348",
376
+ "349": "LABEL_349",
377
+ "350": "LABEL_350",
378
+ "351": "LABEL_351",
379
+ "352": "LABEL_352",
380
+ "353": "LABEL_353",
381
+ "354": "LABEL_354",
382
+ "355": "LABEL_355",
383
+ "356": "LABEL_356",
384
+ "357": "LABEL_357",
385
+ "358": "LABEL_358",
386
+ "359": "LABEL_359",
387
+ "360": "LABEL_360",
388
+ "361": "LABEL_361",
389
+ "362": "LABEL_362",
390
+ "363": "LABEL_363",
391
+ "364": "LABEL_364",
392
+ "365": "LABEL_365",
393
+ "366": "LABEL_366",
394
+ "367": "LABEL_367",
395
+ "368": "LABEL_368",
396
+ "369": "LABEL_369",
397
+ "370": "LABEL_370",
398
+ "371": "LABEL_371",
399
+ "372": "LABEL_372",
400
+ "373": "LABEL_373",
401
+ "374": "LABEL_374",
402
+ "375": "LABEL_375",
403
+ "376": "LABEL_376",
404
+ "377": "LABEL_377",
405
+ "378": "LABEL_378",
406
+ "379": "LABEL_379",
407
+ "380": "LABEL_380",
408
+ "381": "LABEL_381",
409
+ "382": "LABEL_382",
410
+ "383": "LABEL_383",
411
+ "384": "LABEL_384",
412
+ "385": "LABEL_385",
413
+ "386": "LABEL_386",
414
+ "387": "LABEL_387",
415
+ "388": "LABEL_388",
416
+ "389": "LABEL_389",
417
+ "390": "LABEL_390",
418
+ "391": "LABEL_391",
419
+ "392": "LABEL_392",
420
+ "393": "LABEL_393",
421
+ "394": "LABEL_394",
422
+ "395": "LABEL_395",
423
+ "396": "LABEL_396",
424
+ "397": "LABEL_397",
425
+ "398": "LABEL_398",
426
+ "399": "LABEL_399",
427
+ "400": "LABEL_400",
428
+ "401": "LABEL_401",
429
+ "402": "LABEL_402",
430
+ "403": "LABEL_403",
431
+ "404": "LABEL_404",
432
+ "405": "LABEL_405",
433
+ "406": "LABEL_406",
434
+ "407": "LABEL_407",
435
+ "408": "LABEL_408",
436
+ "409": "LABEL_409",
437
+ "410": "LABEL_410"
438
+ },
439
+ "image_size": 240,
440
+ "in_channels": [
441
+ 32,
442
+ 16,
443
+ 24,
444
+ 40,
445
+ 80,
446
+ 112,
447
+ 192
448
+ ],
449
+ "initializer_range": 0.02,
450
+ "kernel_sizes": [
451
+ 3,
452
+ 3,
453
+ 5,
454
+ 3,
455
+ 5,
456
+ 5,
457
+ 3
458
+ ],
459
+ "label2id": {
460
+ "LABEL_0": 0,
461
+ "LABEL_1": 1,
462
+ "LABEL_10": 10,
463
+ "LABEL_100": 100,
464
+ "LABEL_101": 101,
465
+ "LABEL_102": 102,
466
+ "LABEL_103": 103,
467
+ "LABEL_104": 104,
468
+ "LABEL_105": 105,
469
+ "LABEL_106": 106,
470
+ "LABEL_107": 107,
471
+ "LABEL_108": 108,
472
+ "LABEL_109": 109,
473
+ "LABEL_11": 11,
474
+ "LABEL_110": 110,
475
+ "LABEL_111": 111,
476
+ "LABEL_112": 112,
477
+ "LABEL_113": 113,
478
+ "LABEL_114": 114,
479
+ "LABEL_115": 115,
480
+ "LABEL_116": 116,
481
+ "LABEL_117": 117,
482
+ "LABEL_118": 118,
483
+ "LABEL_119": 119,
484
+ "LABEL_12": 12,
485
+ "LABEL_120": 120,
486
+ "LABEL_121": 121,
487
+ "LABEL_122": 122,
488
+ "LABEL_123": 123,
489
+ "LABEL_124": 124,
490
+ "LABEL_125": 125,
491
+ "LABEL_126": 126,
492
+ "LABEL_127": 127,
493
+ "LABEL_128": 128,
494
+ "LABEL_129": 129,
495
+ "LABEL_13": 13,
496
+ "LABEL_130": 130,
497
+ "LABEL_131": 131,
498
+ "LABEL_132": 132,
499
+ "LABEL_133": 133,
500
+ "LABEL_134": 134,
501
+ "LABEL_135": 135,
502
+ "LABEL_136": 136,
503
+ "LABEL_137": 137,
504
+ "LABEL_138": 138,
505
+ "LABEL_139": 139,
506
+ "LABEL_14": 14,
507
+ "LABEL_140": 140,
508
+ "LABEL_141": 141,
509
+ "LABEL_142": 142,
510
+ "LABEL_143": 143,
511
+ "LABEL_144": 144,
512
+ "LABEL_145": 145,
513
+ "LABEL_146": 146,
514
+ "LABEL_147": 147,
515
+ "LABEL_148": 148,
516
+ "LABEL_149": 149,
517
+ "LABEL_15": 15,
518
+ "LABEL_150": 150,
519
+ "LABEL_151": 151,
520
+ "LABEL_152": 152,
521
+ "LABEL_153": 153,
522
+ "LABEL_154": 154,
523
+ "LABEL_155": 155,
524
+ "LABEL_156": 156,
525
+ "LABEL_157": 157,
526
+ "LABEL_158": 158,
527
+ "LABEL_159": 159,
528
+ "LABEL_16": 16,
529
+ "LABEL_160": 160,
530
+ "LABEL_161": 161,
531
+ "LABEL_162": 162,
532
+ "LABEL_163": 163,
533
+ "LABEL_164": 164,
534
+ "LABEL_165": 165,
535
+ "LABEL_166": 166,
536
+ "LABEL_167": 167,
537
+ "LABEL_168": 168,
538
+ "LABEL_169": 169,
539
+ "LABEL_17": 17,
540
+ "LABEL_170": 170,
541
+ "LABEL_171": 171,
542
+ "LABEL_172": 172,
543
+ "LABEL_173": 173,
544
+ "LABEL_174": 174,
545
+ "LABEL_175": 175,
546
+ "LABEL_176": 176,
547
+ "LABEL_177": 177,
548
+ "LABEL_178": 178,
549
+ "LABEL_179": 179,
550
+ "LABEL_18": 18,
551
+ "LABEL_180": 180,
552
+ "LABEL_181": 181,
553
+ "LABEL_182": 182,
554
+ "LABEL_183": 183,
555
+ "LABEL_184": 184,
556
+ "LABEL_185": 185,
557
+ "LABEL_186": 186,
558
+ "LABEL_187": 187,
559
+ "LABEL_188": 188,
560
+ "LABEL_189": 189,
561
+ "LABEL_19": 19,
562
+ "LABEL_190": 190,
563
+ "LABEL_191": 191,
564
+ "LABEL_192": 192,
565
+ "LABEL_193": 193,
566
+ "LABEL_194": 194,
567
+ "LABEL_195": 195,
568
+ "LABEL_196": 196,
569
+ "LABEL_197": 197,
570
+ "LABEL_198": 198,
571
+ "LABEL_199": 199,
572
+ "LABEL_2": 2,
573
+ "LABEL_20": 20,
574
+ "LABEL_200": 200,
575
+ "LABEL_201": 201,
576
+ "LABEL_202": 202,
577
+ "LABEL_203": 203,
578
+ "LABEL_204": 204,
579
+ "LABEL_205": 205,
580
+ "LABEL_206": 206,
581
+ "LABEL_207": 207,
582
+ "LABEL_208": 208,
583
+ "LABEL_209": 209,
584
+ "LABEL_21": 21,
585
+ "LABEL_210": 210,
586
+ "LABEL_211": 211,
587
+ "LABEL_212": 212,
588
+ "LABEL_213": 213,
589
+ "LABEL_214": 214,
590
+ "LABEL_215": 215,
591
+ "LABEL_216": 216,
592
+ "LABEL_217": 217,
593
+ "LABEL_218": 218,
594
+ "LABEL_219": 219,
595
+ "LABEL_22": 22,
596
+ "LABEL_220": 220,
597
+ "LABEL_221": 221,
598
+ "LABEL_222": 222,
599
+ "LABEL_223": 223,
600
+ "LABEL_224": 224,
601
+ "LABEL_225": 225,
602
+ "LABEL_226": 226,
603
+ "LABEL_227": 227,
604
+ "LABEL_228": 228,
605
+ "LABEL_229": 229,
606
+ "LABEL_23": 23,
607
+ "LABEL_230": 230,
608
+ "LABEL_231": 231,
609
+ "LABEL_232": 232,
610
+ "LABEL_233": 233,
611
+ "LABEL_234": 234,
612
+ "LABEL_235": 235,
613
+ "LABEL_236": 236,
614
+ "LABEL_237": 237,
615
+ "LABEL_238": 238,
616
+ "LABEL_239": 239,
617
+ "LABEL_24": 24,
618
+ "LABEL_240": 240,
619
+ "LABEL_241": 241,
620
+ "LABEL_242": 242,
621
+ "LABEL_243": 243,
622
+ "LABEL_244": 244,
623
+ "LABEL_245": 245,
624
+ "LABEL_246": 246,
625
+ "LABEL_247": 247,
626
+ "LABEL_248": 248,
627
+ "LABEL_249": 249,
628
+ "LABEL_25": 25,
629
+ "LABEL_250": 250,
630
+ "LABEL_251": 251,
631
+ "LABEL_252": 252,
632
+ "LABEL_253": 253,
633
+ "LABEL_254": 254,
634
+ "LABEL_255": 255,
635
+ "LABEL_256": 256,
636
+ "LABEL_257": 257,
637
+ "LABEL_258": 258,
638
+ "LABEL_259": 259,
639
+ "LABEL_26": 26,
640
+ "LABEL_260": 260,
641
+ "LABEL_261": 261,
642
+ "LABEL_262": 262,
643
+ "LABEL_263": 263,
644
+ "LABEL_264": 264,
645
+ "LABEL_265": 265,
646
+ "LABEL_266": 266,
647
+ "LABEL_267": 267,
648
+ "LABEL_268": 268,
649
+ "LABEL_269": 269,
650
+ "LABEL_27": 27,
651
+ "LABEL_270": 270,
652
+ "LABEL_271": 271,
653
+ "LABEL_272": 272,
654
+ "LABEL_273": 273,
655
+ "LABEL_274": 274,
656
+ "LABEL_275": 275,
657
+ "LABEL_276": 276,
658
+ "LABEL_277": 277,
659
+ "LABEL_278": 278,
660
+ "LABEL_279": 279,
661
+ "LABEL_28": 28,
662
+ "LABEL_280": 280,
663
+ "LABEL_281": 281,
664
+ "LABEL_282": 282,
665
+ "LABEL_283": 283,
666
+ "LABEL_284": 284,
667
+ "LABEL_285": 285,
668
+ "LABEL_286": 286,
669
+ "LABEL_287": 287,
670
+ "LABEL_288": 288,
671
+ "LABEL_289": 289,
672
+ "LABEL_29": 29,
673
+ "LABEL_290": 290,
674
+ "LABEL_291": 291,
675
+ "LABEL_292": 292,
676
+ "LABEL_293": 293,
677
+ "LABEL_294": 294,
678
+ "LABEL_295": 295,
679
+ "LABEL_296": 296,
680
+ "LABEL_297": 297,
681
+ "LABEL_298": 298,
682
+ "LABEL_299": 299,
683
+ "LABEL_3": 3,
684
+ "LABEL_30": 30,
685
+ "LABEL_300": 300,
686
+ "LABEL_301": 301,
687
+ "LABEL_302": 302,
688
+ "LABEL_303": 303,
689
+ "LABEL_304": 304,
690
+ "LABEL_305": 305,
691
+ "LABEL_306": 306,
692
+ "LABEL_307": 307,
693
+ "LABEL_308": 308,
694
+ "LABEL_309": 309,
695
+ "LABEL_31": 31,
696
+ "LABEL_310": 310,
697
+ "LABEL_311": 311,
698
+ "LABEL_312": 312,
699
+ "LABEL_313": 313,
700
+ "LABEL_314": 314,
701
+ "LABEL_315": 315,
702
+ "LABEL_316": 316,
703
+ "LABEL_317": 317,
704
+ "LABEL_318": 318,
705
+ "LABEL_319": 319,
706
+ "LABEL_32": 32,
707
+ "LABEL_320": 320,
708
+ "LABEL_321": 321,
709
+ "LABEL_322": 322,
710
+ "LABEL_323": 323,
711
+ "LABEL_324": 324,
712
+ "LABEL_325": 325,
713
+ "LABEL_326": 326,
714
+ "LABEL_327": 327,
715
+ "LABEL_328": 328,
716
+ "LABEL_329": 329,
717
+ "LABEL_33": 33,
718
+ "LABEL_330": 330,
719
+ "LABEL_331": 331,
720
+ "LABEL_332": 332,
721
+ "LABEL_333": 333,
722
+ "LABEL_334": 334,
723
+ "LABEL_335": 335,
724
+ "LABEL_336": 336,
725
+ "LABEL_337": 337,
726
+ "LABEL_338": 338,
727
+ "LABEL_339": 339,
728
+ "LABEL_34": 34,
729
+ "LABEL_340": 340,
730
+ "LABEL_341": 341,
731
+ "LABEL_342": 342,
732
+ "LABEL_343": 343,
733
+ "LABEL_344": 344,
734
+ "LABEL_345": 345,
735
+ "LABEL_346": 346,
736
+ "LABEL_347": 347,
737
+ "LABEL_348": 348,
738
+ "LABEL_349": 349,
739
+ "LABEL_35": 35,
740
+ "LABEL_350": 350,
741
+ "LABEL_351": 351,
742
+ "LABEL_352": 352,
743
+ "LABEL_353": 353,
744
+ "LABEL_354": 354,
745
+ "LABEL_355": 355,
746
+ "LABEL_356": 356,
747
+ "LABEL_357": 357,
748
+ "LABEL_358": 358,
749
+ "LABEL_359": 359,
750
+ "LABEL_36": 36,
751
+ "LABEL_360": 360,
752
+ "LABEL_361": 361,
753
+ "LABEL_362": 362,
754
+ "LABEL_363": 363,
755
+ "LABEL_364": 364,
756
+ "LABEL_365": 365,
757
+ "LABEL_366": 366,
758
+ "LABEL_367": 367,
759
+ "LABEL_368": 368,
760
+ "LABEL_369": 369,
761
+ "LABEL_37": 37,
762
+ "LABEL_370": 370,
763
+ "LABEL_371": 371,
764
+ "LABEL_372": 372,
765
+ "LABEL_373": 373,
766
+ "LABEL_374": 374,
767
+ "LABEL_375": 375,
768
+ "LABEL_376": 376,
769
+ "LABEL_377": 377,
770
+ "LABEL_378": 378,
771
+ "LABEL_379": 379,
772
+ "LABEL_38": 38,
773
+ "LABEL_380": 380,
774
+ "LABEL_381": 381,
775
+ "LABEL_382": 382,
776
+ "LABEL_383": 383,
777
+ "LABEL_384": 384,
778
+ "LABEL_385": 385,
779
+ "LABEL_386": 386,
780
+ "LABEL_387": 387,
781
+ "LABEL_388": 388,
782
+ "LABEL_389": 389,
783
+ "LABEL_39": 39,
784
+ "LABEL_390": 390,
785
+ "LABEL_391": 391,
786
+ "LABEL_392": 392,
787
+ "LABEL_393": 393,
788
+ "LABEL_394": 394,
789
+ "LABEL_395": 395,
790
+ "LABEL_396": 396,
791
+ "LABEL_397": 397,
792
+ "LABEL_398": 398,
793
+ "LABEL_399": 399,
794
+ "LABEL_4": 4,
795
+ "LABEL_40": 40,
796
+ "LABEL_400": 400,
797
+ "LABEL_401": 401,
798
+ "LABEL_402": 402,
799
+ "LABEL_403": 403,
800
+ "LABEL_404": 404,
801
+ "LABEL_405": 405,
802
+ "LABEL_406": 406,
803
+ "LABEL_407": 407,
804
+ "LABEL_408": 408,
805
+ "LABEL_409": 409,
806
+ "LABEL_41": 41,
807
+ "LABEL_410": 410,
808
+ "LABEL_42": 42,
809
+ "LABEL_43": 43,
810
+ "LABEL_44": 44,
811
+ "LABEL_45": 45,
812
+ "LABEL_46": 46,
813
+ "LABEL_47": 47,
814
+ "LABEL_48": 48,
815
+ "LABEL_49": 49,
816
+ "LABEL_5": 5,
817
+ "LABEL_50": 50,
818
+ "LABEL_51": 51,
819
+ "LABEL_52": 52,
820
+ "LABEL_53": 53,
821
+ "LABEL_54": 54,
822
+ "LABEL_55": 55,
823
+ "LABEL_56": 56,
824
+ "LABEL_57": 57,
825
+ "LABEL_58": 58,
826
+ "LABEL_59": 59,
827
+ "LABEL_6": 6,
828
+ "LABEL_60": 60,
829
+ "LABEL_61": 61,
830
+ "LABEL_62": 62,
831
+ "LABEL_63": 63,
832
+ "LABEL_64": 64,
833
+ "LABEL_65": 65,
834
+ "LABEL_66": 66,
835
+ "LABEL_67": 67,
836
+ "LABEL_68": 68,
837
+ "LABEL_69": 69,
838
+ "LABEL_7": 7,
839
+ "LABEL_70": 70,
840
+ "LABEL_71": 71,
841
+ "LABEL_72": 72,
842
+ "LABEL_73": 73,
843
+ "LABEL_74": 74,
844
+ "LABEL_75": 75,
845
+ "LABEL_76": 76,
846
+ "LABEL_77": 77,
847
+ "LABEL_78": 78,
848
+ "LABEL_79": 79,
849
+ "LABEL_8": 8,
850
+ "LABEL_80": 80,
851
+ "LABEL_81": 81,
852
+ "LABEL_82": 82,
853
+ "LABEL_83": 83,
854
+ "LABEL_84": 84,
855
+ "LABEL_85": 85,
856
+ "LABEL_86": 86,
857
+ "LABEL_87": 87,
858
+ "LABEL_88": 88,
859
+ "LABEL_89": 89,
860
+ "LABEL_9": 9,
861
+ "LABEL_90": 90,
862
+ "LABEL_91": 91,
863
+ "LABEL_92": 92,
864
+ "LABEL_93": 93,
865
+ "LABEL_94": 94,
866
+ "LABEL_95": 95,
867
+ "LABEL_96": 96,
868
+ "LABEL_97": 97,
869
+ "LABEL_98": 98,
870
+ "LABEL_99": 99
871
+ },
872
+ "model_type": "efficientnet",
873
+ "num_block_repeats": [
874
+ 1,
875
+ 2,
876
+ 2,
877
+ 3,
878
+ 3,
879
+ 4,
880
+ 1
881
+ ],
882
+ "num_channels": 1,
883
+ "num_hidden_layers": 64,
884
+ "out_channels": [
885
+ 16,
886
+ 24,
887
+ 40,
888
+ 80,
889
+ 112,
890
+ 192,
891
+ 320
892
+ ],
893
+ "pooling_type": "mean",
894
+ "squeeze_expansion_ratio": 0.25,
895
+ "strides": [
896
+ 1,
897
+ 2,
898
+ 2,
899
+ 2,
900
+ 1,
901
+ 2,
902
+ 1
903
+ ],
904
+ "torch_dtype": "float32",
905
+ "transformers_version": "4.38.1",
906
+ "width_coefficient": 1.0
907
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5af4f84e5b282abd8eb52fbd36bcc9af308ce2875780a1a097e4052b71fb541c
3
+ size 28470956