Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,82 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# CLEX: Continuous Length Extrapolation for Large Language Models
|
6 |
+
This repo stores the checkpoint of CLEX-Mixtral-8x7B-Chat-32K.
|
7 |
+
|
8 |
+
|
9 |
+
## Features and Highlights of CLEX
|
10 |
+
![CLEX_diagram](https://github.com/DAMO-NLP-SG/CLEX/assets/18526640/063ffe34-0116-4759-92bf-e22fc7264cdf)
|
11 |
+
|
12 |
+
- **Simple and Clear**: _MINIMAL_ code and architecture changes. Only one up-and-down projection layer introduced, _NO_ recurrent memory caching or sparse attention required.
|
13 |
+
- **Train Short, Test Long**: _NO_ performance drop on the sequences _4x~8x longer_ than the training ones (see [here](https://github.com/DAMO-NLP-SG/CLEX#language-modelling)).
|
14 |
+
- **Continuous Length Extrapolation**: Explicitly modeling the continuous dynamics of context window size during length extrapolation.
|
15 |
+
|
16 |
+
If you have any questions, feel free to contact us. (Emails: guanzzh.chen@gmail.com, lixin4ever@gmail.com)
|
17 |
+
|
18 |
+
## Model Zoo
|
19 |
+
<div align="center">
|
20 |
+
|
21 |
+
| Model Name | Model Type | Starting Point | Train Data |Train Length | MAX Test Length | HF Repo |
|
22 |
+
|:-----|:-----|:-----------|:-----------|:-----------|:-----------|:------:|
|
23 |
+
| CLEX-LLaMA-2-7B-16K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-16K) |
|
24 |
+
| CLEX-LLaMA-2-7B-Chat-16K | chat | CLEX-7B-16K | [UltraChat](https://github.com/thunlp/UltraChat) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-Chat-16K) |
|
25 |
+
| CLEX-LLaMA-2-7B-64K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 64k | 256K | Pending Upload |
|
26 |
+
| CLEX-Phi-2-7B-32K | base | Phi-2-2.7B | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | 128K | Pending Upload |
|
27 |
+
| CLEX-Mixtral-8x7B-32K | base | Mixtral-8x7B-v0.1 | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | >128K | Pending Upload |
|
28 |
+
| CLEX-Mixtral-8x7B-Chat-32k | chat | CLEX-Mixtral-8x7B-32K | [Ultrachat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) | 32k | >128K | Pending Upload |
|
29 |
+
</div>
|
30 |
+
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
|
35 |
+
```bash
|
36 |
+
import torch
|
37 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K", trust_remote_code=True)
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K", torch_dtype=torch.bfloat16)
|
41 |
+
inputs = tokenizer("What is CLEX?", return_tensors="pt")
|
42 |
+
sample = model.generate(**inputs, max_length=128)
|
43 |
+
print(tokenizer.decode(sample[0]))
|
44 |
+
```
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
## Evaluation
|
50 |
+
|
51 |
+
|
52 |
+
## InfiniteBench
|
53 |
+
We also evaluate CLEX-Mixtral-8x7B-Chat-32k on [InfiniteBench](https://github.com/OpenBMB/InfiniteBench), which is a 128k-length benchmark covering various tasks. We compare our CLEX-Mixtral-8x7B-Chat-32k with GPT-4, Claude, KimiChat, and vanilla Mixtral-8x7B.
|
54 |
+
|
55 |
+
| Task Name | GPT-4 | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | CLEX-Mixtral-8x7B-Chat-32k | Mixtral-8x7B-Instruct-v0.1 |
|
56 |
+
| ------------------- | ------ | --------------- | --------- | -------- | -------------------------- | -------------------------- |
|
57 |
+
| Retrieve.PassKey | 100% | 92.71% | 98.14% | 97.80% | 99.72% | 96.78% |
|
58 |
+
| **Retrieve.Number** | 100% | 56.61% | 95.42% | 98.14% | 76.10% | 76.61% |
|
59 |
+
| **Retrieve.KV** | 89.00% | < 5% | 53.60% | 65.40% | <5% | <%5 |
|
60 |
+
| En.Sum | 14.73% | 9.09% | 17.93% | 14.45% | 15.48% | 14.3% |
|
61 |
+
| En.QA | 22.22% | 9.55% | 16.52% | 11.97% | 15.52% | 16.81% |
|
62 |
+
| En.MC | 67.25% | 27.95% | 72.49% | 62.88% | 58.96% | 56.77% |
|
63 |
+
| En.Dia | 8.50% | 7.50% | 11.50% | 46.50% | 9% | <5% |
|
64 |
+
| Code.Debug | 39.59% | < 5% | 18.02% | < 5% | 21.32% | <5% |
|
65 |
+
| Code.Run | 23.25% | < 5% | < 5% | < 5% | < 5% | <5% |
|
66 |
+
| Math.Calc | < 5% | < 5% | < 5% | < 5% | < 5% | <5% |
|
67 |
+
| Math.Find | 60.00% | 17.14% | 12.57% | 32.29% | 28% | 26.57% |
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
## Citation
|
72 |
+
If you find our project useful, hope you can star our repo and cite our paper as follows:
|
73 |
+
```
|
74 |
+
@article{damonlpsg2023clex,
|
75 |
+
author = {Chen, Guanzheng and Li, Xin and Meng, Zaiqiao and Liang, Shangsong and Bing, Lidong},
|
76 |
+
title = {CLEX: Continuous Length Extrapolation for Large Language Models},
|
77 |
+
year = 2023,
|
78 |
+
journal = {arXiv preprint arXiv:2310.16450},
|
79 |
+
url = {https://arxiv.org/abs/2310.16450}
|
80 |
+
}
|
81 |
+
```
|
82 |
+
|