Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,75 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# CLEX: Continuous Length Extrapolation for Large Language Models
|
6 |
+
This repo stores the checkpoint of CLEX-LLaMA-2-7B-64K.
|
7 |
+
|
8 |
+
|
9 |
+
## Features and Highlights of CLEX
|
10 |
+
![CLEX_diagram](https://github.com/DAMO-NLP-SG/CLEX/assets/18526640/063ffe34-0116-4759-92bf-e22fc7264cdf)
|
11 |
+
|
12 |
+
- **Simple and Clear**: _MINIMAL_ code and architecture changes. Only one up-and-down projection layer introduced, _NO_ recurrent memory caching or sparse attention required.
|
13 |
+
- **Train Short, Test Long**: _NO_ performance drop on the sequences _4x~8x longer_ than the training ones (see [here](https://github.com/DAMO-NLP-SG/CLEX#language-modelling)).
|
14 |
+
- **Continuous Length Extrapolation**: Explicitly modeling the continuous dynamics of context window size during length extrapolation.
|
15 |
+
|
16 |
+
If you have any questions, feel free to contact us. (Emails: guanzzh.chen@gmail.com, lixin4ever@gmail.com)
|
17 |
+
|
18 |
+
## Model Zoo
|
19 |
+
<div align="center">
|
20 |
+
|
21 |
+
| Model Name | Model Type | Starting Point | Train Data |Train Length | MAX Test Length | HF Repo |
|
22 |
+
|:-----|:-----|:-----------|:-----------|:-----------|:-----------|:------:|
|
23 |
+
| CLEX-LLaMA-2-7B-16K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-16K) |
|
24 |
+
| CLEX-LLaMA-2-7B-Chat-16K | chat | CLEX-7B-16K | [UltraChat](https://github.com/thunlp/UltraChat) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-Chat-16K) |
|
25 |
+
| CLEX-LLaMA-2-7B-64K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 64k | 256K | Pending Upload |
|
26 |
+
| CLEX-Phi-2-7B-32K | base | Phi-2-2.7B | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | 128K | Pending Upload |
|
27 |
+
| CLEX-Mixtral-8x7B-32K | base | Mixtral-8x7B-v0.1 | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | >128K | Pending Upload |
|
28 |
+
| CLEX-Mixtral-8x7B-Chat-32k | chat | CLEX-Mixtral-8x7B-32K | [Ultrachat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) | 32k | >128K | Pending Upload |
|
29 |
+
</div>
|
30 |
+
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
|
35 |
+
```bash
|
36 |
+
import torch
|
37 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K", trust_remote_code=True)
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K", torch_dtype=torch.bfloat16)
|
41 |
+
inputs = tokenizer("What is CLEX?", return_tensors="pt")
|
42 |
+
sample = model.generate(**inputs, max_length=128)
|
43 |
+
print(tokenizer.decode(sample[0]))
|
44 |
+
```
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
## Evaluation
|
50 |
+
### Language Modelling
|
51 |
+
Here are the evaluation PPLs of the base models trained with CLEX. We apply training and evaluation on a subset of 2B tokens from the [RedPajama-Book](https://github.com/togethercomputer/RedPajama-Data) corpus, where the training and test sets are split by 99:1.
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
| | Train Length | Eval.(32k) | Eval.(64k) | Eval.(128k) | Eval.(256k) |
|
56 |
+
| --------------- | ------------ | ---------- | ---------- | ----------- | ----------- |
|
57 |
+
| CLEX-LLaMA-2-7B | 64k | 5.99 | 5.89 | 6.04 | 5.98 |
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
## Citation
|
65 |
+
If you find our project useful, hope you can star our repo and cite our paper as follows:
|
66 |
+
```
|
67 |
+
@article{damonlpsg2023clex,
|
68 |
+
author = {Chen, Guanzheng and Li, Xin and Meng, Zaiqiao and Liang, Shangsong and Bing, Lidong},
|
69 |
+
title = {CLEX: Continuous Length Extrapolation for Large Language Models},
|
70 |
+
year = 2023,
|
71 |
+
journal = {arXiv preprint arXiv:2310.16450},
|
72 |
+
url = {https://arxiv.org/abs/2310.16450}
|
73 |
+
}
|
74 |
+
```
|
75 |
+
|