# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" LLaMA model configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
from transformers import LlamaConfig | |
logger = logging.get_logger(__name__) | |
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
class CLEXLlamaConfig(LlamaConfig): | |
model_type = "llama" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
rope_scaling=None, | |
use_flashattn=True, | |
log_scale=True, | |
pretraining_tp=1, | |
**kwargs, | |
): | |
super().__init__( | |
**kwargs, | |
) | |
self.pretraining_tp = pretraining_tp | |
self.use_flashattn = use_flashattn | |
self.log_scale = log_scale | |
# self.rope_theta = 10000 | |
# self.max_position_embeddings = 4096 | |
# self.data_length = 4096 | |
self.rope_scaling = rope_scaling | |
self._rope_scaling_validation() | |
def _rope_scaling_validation(self): | |
""" | |
Validate the `rope_scaling` configuration. | |
""" | |
if self.rope_scaling is None: | |
return | |
# if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | |
# raise ValueError( | |
# "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " | |
# f"got {self.rope_scaling}" | |
# ) | |
rope_scaling_type = self.rope_scaling.get("type", None) | |
rope_scaling_max_factor = self.rope_scaling.get("max_factor", None) | |
rope_scaling_param_factor = self.rope_scaling.get("param_factor", None) | |
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "clex"]: | |
raise ValueError( | |
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | |
) | |
# if rope_scaling_max_factor is None or not isinstance(rope_scaling_max_factor, float) or rope_scaling_max_factor <= 1.0: | |
# raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_max_factor}") | |
# if rope_scaling_param_factor is None or not isinstance(rope_scaling_param_factor, float) or rope_scaling_param_factor <= 1.0: | |
# raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_param_factor}") | |