ISSR_Visual_Model / README.md
D0men1c0's picture
Update README.md
ba6d952 verified
|
raw
history blame
2.52 kB
metadata
tags:
  - bertopic
library_name: bertopic

ISSR_Visual_Model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("D0men1c0/ISSR_Visual_Model")

topic_model.get_topic_info()

You can make predictions as follows:

val_labels = [...] # list of caption
val_images = [...] # list of images

topic, _ = topic_model.transform(val_labels, images=val_images)
all_topic_info = [topic_model.get_topic_info(t) for t in topic]
all_prediction_info = pd.concat(all_topic_info, ignore_index=True)

# Visualize predictions:
sample_images = 100
n_images = min(sample_images, len(val_images))
n_cols = 4
n_rows = math.ceil(n_images / n_cols)

fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, n_rows * 3))
axes = axes.flatten()

for i, (path, (_, row)) in enumerate(zip(val_images[:n_images], all_prediction_info.iterrows())):
    ax = axes[i]
    ax.imshow(Image.open(path))
    ax.axis('off')
    ax.set_title(f"Topic {row['Topic']}: {row['KeyBERTInspired'][0]}")

# Hide unused axes
for j in range(n_images, len(axes)):
    axes[j].axis('off')

plt.tight_layout()
plt.show()

Topic overview

  • Number of topics: 5
  • Number of training documents: 2997
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 drug - people - gun - - 151 -1_drug_people_gun_
0 gun - people - drug - - 2152 0_gun_people_drug_
1 drug - gun - - - 342 1_drug_gun__
2 people - gun - - - 287 2_people_gun__
3 people - gun - drug - - 65 3_people_gun_drug_

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 50
  • n_gram_range: (1, 3)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 5
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.36
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.4.1.post1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.39.3
  • Numba: 0.60.0
  • Plotly: 5.22.0
  • Python: 3.12.4